数論多様体の分岐とL-関数に関する研究

算术簇的分岔和L-函数研究

基本信息

  • 批准号:
    15740012
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

1.近藤智氏との共同研究を行い、以下の成果を得た。前年度までの共同研究に登場した、正標数の大域体F,Fの素点∞、および正標数d【greater than or equal】1に対する、F上の階数dの、適当なレベル構造つきのDrinfeldモジュラー多様体のd-次Milnor K-群の元の改良および一般化を行い、Drinfeldモジュラー多様体の無限素点でのreductionと関係するBruhat-Tits buildingの数論的商に関する、GL_dの一般のモジュラーシンボル(の関数体類似)と関係づけることができた。まだ完成していないが、これらのモジュラーシンボルが、上記の数論的商のとあるホモロジー群を生成することが証明できる見通しが立っており、それが実元すると、Drinfeldモジュラー多様体のMilnor K-群に十分多くの元が構成できたことになる。またd=2の場合に、上記のように構成した元を用いて、関数体上の楕円曲線のK_<2->群に十分多くの元を作る事への応用を行った(プレプリント執筆中)。この方面へ応用するというアイディアは近藤氏による。当該研究者の貢献はl-進層の消滅サイクルの理論を援用して、曲線のモデルの考察を最小限にとどめる技法を開発したところにある。2.体上の楕円曲線EのK_1群とK_2群を、Gersten複体の部分複体を用いて記述する予想を与え、E上のベクトル束の分類およびFourier-向井変換を用いて、それを証明するための計算の主要な部分を実行した。
1. Kondo's joint research was conducted, and the following results were obtained. In the previous year, joint research was conducted on the large domain F of positive scalar number, the prime point ∞ of F, the prime point ∞ of F, the prime point ∞ of F, GL_d's general In addition, it is necessary to establish a complete set of mathematical quotient, a set of mathematical quotient, a set of mathematical quotient, a In the case of d=2, the composition of the element is used in the case of the K_group of the curve on the number body<2->. This is the first time I've ever seen a woman. When the researcher's contribution to the development of the theory of the elimination of the layer, the curve of the investigation of the minimum limit of the technique to develop 2. K_1 group and K_2 group of curve E on the body, Gersten complex and partial complex are described in detail. The classification of Fourier-well transformation on E is proved in detail.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

安田 正大其他文献

重さ (p^2+1)/2 以下の 2 次元クリスタリン表現の整構造
结构良好的二维晶体表示,重量小于 (p^2+1)/2
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kashiwara Masaki;Park Euiyong;Seidai Yasuda;安田 正大
  • 通讯作者:
    安田 正大
Hamiltonian non-displaceability of certain Lagrangian submanifolds
某些拉格朗日子流形的哈密顿不可位移性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goo Ishikawa;Yoshinori Machida;Masatomo Takahashi;Toshiyuki Katsura;R.Miyaoka;安田 正大;Toshiyuki Katsura;Goo Ishikawa;Reiko Miyaoka
  • 通讯作者:
    Reiko Miyaoka
多重ゼータ値についての最近の進展とドゥリーニュ・伊原予想
多个zeta值和Deligne-Ihara猜想的最新进展
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Ando;T. Suzuki and HF. Yamada;Mieko Yamada;安田 正大
  • 通讯作者:
    安田 正大
An Erdos problem on polynomials
多项式的鄂尔多斯问题
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masanori ANDO;Takeshi SUZUKI and Hiro-Fumi YAMADA;山崎愛一;Shigeki Akiyama;H.-F. Yamada;山田美枝子;安田 正大;Masao Tsuzuki;山崎愛一;HF. Yamada;籾原幸二;Satoshi Kondo;Shigeki Akiyama
  • 通讯作者:
    Shigeki Akiyama
一般線形群上の局所新形式について
关于一般线性群的局部新形式
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中島俊;安田 正大
  • 通讯作者:
    安田 正大

安田 正大的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('安田 正大', 18)}}的其他基金

数論的対象の背後にある幾何学の発見・構築を通じたL関数・ガロア表現の研究
通过发现和构造算术对象背后的几何来研究 L 函数和伽罗瓦表示
  • 批准号:
    23K20782
  • 财政年份:
    2024
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
数論的対象の背後にある幾何学の発見・構築を通じたL関数・ガロア表現の研究
通过发现和构造算术对象背后的几何来研究 L 函数和伽罗瓦表示
  • 批准号:
    21H00969
  • 财政年份:
    2021
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
数論的多様体の分岐とL-関数
算术流形和 L 函数的分支
  • 批准号:
    02J07379
  • 财政年份:
    2002
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了