数論的多様体の分岐とL-関数
算术流形和 L 函数的分支
基本信息
- 批准号:02J07379
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ArtinモチーフのTate twistに対するBloch加藤予想と関数等式とのcompatibilityについて研究した結果,それが(B^<ψ=p^γ>_<crys>∩B^+_<dR>)/Z_pt^γの構造を調べることに帰着された.Artinモチーフに対するBloch加藤予想と関数等式とのcompatibilityに関する下記の結果を,ChinbergのΩ(N/K,2)不変量に関する予想と関係づけられることがわかった.また(B^<ψ=p^γ>_<crys>∩B^+_<dR>)/Z_pt^γの構造をと,導手の理論との密接な結びつきが明らかになってきた.一咋年に自分が得た,局所Weil群の表現に対するε_0-因子の構成に関する結果が改良された,当時の結果では,係数環が剰余体が代数閉体の局所環であって,p-乗写像が全射となるものに対してしか,ε_0-定数が構成されていなかった.が、加法指標の値域を係数環と分離することにより,pが加逆となる,一般の可換noether環を係数環とする表現に対しても,同様にε_0-因子の理論が作れることがわかった.加藤和也氏により構成されているp-進ε-元の(ψ,Γ)-加群の視点からの見直しを行った結果,rank 1の表現に対する加藤氏のp-進ε-元は,一見Coleman巾級数を用いた,技巧的な方法を用いて構成されているように見えるが,(ψ,Γ)-加群の立場から見ると,p-進ε-元は,固定した1のp-巾根のsystem ε=(ζ_<p^n>)から作られる元[ε]∈Aに1∈Q_pを送ることにより得られるアーベル群の準同型Q_p→A^×を,通常の加法指標の類似と思い,Tateによるε-因子の構成と同様の構成を実施して構成したものである,という自然な見方ができることがわかった.係数をp-加逆な局所環に一般化したところでの,Langlands対応の問題は,定式化をすることがまず困難であるという問題があることがわかった.不分岐なところで考えると,表現そのものではなく,表現行列の固有多項式しか問題にしていない感が強い.Tameの部分に何らかの対応らしいものを見出すことが勝負だと思われる.ε-因子はそもそも表現行列の固有多項式にしか依存しないことも判明した.対応の確立のためには,tameな場合が本質的であると思われるが,それには,Bushnell, Kutzkoのtypeの理論を用いた,ε-因子の構成の理論(Bushnell, Henniart)と,自分のε_0-元の構成との関連をもっと追う必要があろう.
The results of the study on Artin
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
安田 正大其他文献
多重ゼータ値についての最近の進展とドゥリーニュ・伊原予想
多个zeta值和Deligne-Ihara猜想的最新进展
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. Ando;T. Suzuki and HF. Yamada;Mieko Yamada;安田 正大 - 通讯作者:
安田 正大
An Erdos problem on polynomials
多项式的鄂尔多斯问题
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Masanori ANDO;Takeshi SUZUKI and Hiro-Fumi YAMADA;山崎愛一;Shigeki Akiyama;H.-F. Yamada;山田美枝子;安田 正大;Masao Tsuzuki;山崎愛一;HF. Yamada;籾原幸二;Satoshi Kondo;Shigeki Akiyama - 通讯作者:
Shigeki Akiyama
重さ (p^2+1)/2 以下の 2 次元クリスタリン表現の整構造
结构良好的二维晶体表示,重量小于 (p^2+1)/2
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kashiwara Masaki;Park Euiyong;Seidai Yasuda;安田 正大 - 通讯作者:
安田 正大
Hamiltonian non-displaceability of certain Lagrangian submanifolds
某些拉格朗日子流形的哈密顿不可位移性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Goo Ishikawa;Yoshinori Machida;Masatomo Takahashi;Toshiyuki Katsura;R.Miyaoka;安田 正大;Toshiyuki Katsura;Goo Ishikawa;Reiko Miyaoka - 通讯作者:
Reiko Miyaoka
安田 正大的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('安田 正大', 18)}}的其他基金
数論的対象の背後にある幾何学の発見・構築を通じたL関数・ガロア表現の研究
通过发现和构造算术对象背后的几何来研究 L 函数和伽罗瓦表示
- 批准号:
23K20782 - 财政年份:2024
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
数論的対象の背後にある幾何学の発見・構築を通じたL関数・ガロア表現の研究
通过发现和构造算术对象背后的几何来研究 L 函数和伽罗瓦表示
- 批准号:
21H00969 - 财政年份:2021
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
数論多様体の分岐とL-関数に関する研究
算术簇的分岔和L-函数研究
- 批准号:
15740012 - 财政年份:2003
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
エタール層の分岐理論と特性サイクルの研究
埃塔尔层分岔理论及特征旋回研究
- 批准号:
24KJ0833 - 财政年份:2024
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
分岐理論-調波平衡法統合計算及び実験に基づくマイクロ波回路の分岐現象のモデル化
基于分岔理论-谐波平衡法综合计算与实验的微波电路分岔现象建模
- 批准号:
22K04228 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
- 批准号:
RGPIN-2018-06520 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
分岐理論に基づく吊り橋の上の左右揺動歩行ロボットの同期現象の解明
基于分叉理论阐明吊桥左右摆动机器人同步现象
- 批准号:
22K12178 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
- 批准号:
RGPIN-2018-06520 - 财政年份:2021
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2021
- 资助金额:
$ 0.77万 - 项目类别:
Discovery Grants Program - Individual
Stabilization of natural motions embedded in chaotic responses of a multilink robot; Applications of bifurcation theory
多连杆机器人混沌响应中嵌入的自然运动的稳定性;
- 批准号:
21K04109 - 财政年份:2021
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
部分的に対数的な分岐理論と特性サイクルの研究
部分对数分岔理论及特征循环研究
- 批准号:
21K13769 - 财政年份:2021
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists