Non-Malthusian supercritical Crump-Mode-Jagers processes

非马尔萨斯超临界 Crump-Mode Jagers 过程

基本信息

项目摘要

The subject of this proposal is non-Malthusian general (Crump-Mode-Jagers) branching processes. The asymptotic behavior of supercritical general branching processes with a Malthusian parameter is by now well understood; for instance, by Nerman's celebrated law of large numbers, their growth is in first order exponential with Malthusian rate. Recently, the fluctuations around the first-order growth have also been understood. On the other hand, comparatively little is known about those processes without a Malthusian parameter. The goals of the project are, first, to prove a law of large numbers for non-explosive general branching processes without a Malthusian parameter. The second goal is to find necessary and sufficient conditions for the explosion of general branching processes in finite time. Both problems are related to the functional equation of the smoothing transformation in regimes that have not been studied yet. Methods come from the fields of branching processes, functional equations in probability theory, martingale theory, Laplace transformation, (Poisson) point processes and defective renewal equations.
这个建议的主题是非马尔萨斯一般(Crump-Mode-Jagers)分支过程。具有马尔萨斯参数的超临界一般分支过程的渐近行为现在已经很好地理解了;例如,根据奈曼著名的大数定律,它们的增长是一阶指数的马尔萨斯速率。最近,围绕一阶增长的波动也得到了理解。另一方面,对没有马尔萨斯参数的过程知之甚少。该项目的目标是,首先,证明一个大数定律的非爆炸一般分支过程没有马尔萨斯参数。第二个目标是找到一般分支过程在有限时间内爆炸的充分必要条件。这两个问题都涉及到尚未研究过的制度中的平滑变换的函数方程。方法来自分支过程、概率论中的函数方程、鞅论、拉普拉斯变换、(Poisson)点过程和亏损更新方程等领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Matthias Meiners其他文献

Professor Dr. Matthias Meiners的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Matthias Meiners', 18)}}的其他基金

Fixed points of multivariate smoothing transformations
多元平滑变换的不动点
  • 批准号:
    282184819
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastische Fixpunktgleichungen und ihre Anwendungen
随机不动点方程及其应用
  • 批准号:
    160997061
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Asymptotic fluctuations of supercritical general branching processes
超临界一般支化过程的渐近涨落
  • 批准号:
    460482685
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Discourse Analysis on Malthusian Population Theory
马尔萨斯人口理论话语分析
  • 批准号:
    14530013
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Limits to Copepod Growth: Resolving the Malthusian Dilemma
桡足类生长的限制:解决马尔萨斯困境
  • 批准号:
    9205935
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Limits to Copepod Growth: Resolving the Malthusian Dilemma
桡足类生长的限制:解决马尔萨斯困境
  • 批准号:
    9201476
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了