NSERC-DFG SUSTAIN: In-operando Visualization of catalyst ion transport in PEM fuel cells and electrolyzers

NSERC-DFG SUSTAIN:PEM 燃料电池和电解槽中催化剂离子传输的操作中可视化

基本信息

项目摘要

To meet increasing energy demands in an environmentally sustainable manner, Germany and Canada have recognized hydrogen as one of the most promising pathways for decarbonizing the energy sector. Polymer-electrolyte membrane (PEM) fuel cells and PEM electrolyzers are key technologies in this hydrogen economy. For the large-scale adoption of these technologies, an enhancement in stable long-term operation and a reduction in cost is necessary. The two weak links controlling durable operations are catalyst leaching and PEM degradation. Degradation and leaching of catalyst ions negatively impact the electrochemically active area of the catalyst, reducing the overall reaction rate and resulting in performance loss. More specifically, the movement of catalyst metal ions from the catalyst layer into the PEM, as well as their re-deposition, is understood to be of critical importance but is poorly described. The phenomena are strongly influenced by hydration distribution in the PEM. Additionally, the use of environmentally harmful fluorocarbon-based membranes in fuel cells and electrolyzers is currently questioned, and novel hydrocarbon-based membranes are expected to replace them. In this project, we aim to characterize the dynamics of both water and ion transport in poly-electrolyte membranes on different length scales. To gain insights into the factors controlling fuel cells and electrolyzers´ durability, the proposed project combines novel experimental techniques, such as in-operando visualization and ex-situ and post-mortem membrane characterization, with numerical simulations. A microfluidic model system will be employed to study transport phenomena at the microscale. A larger cell, comprising identical membrane and electrode material as classical laboratory-scale setups, will provide insights into the effects of hydration level and act as a bridge between microfluidics and the bench-top scale. In bench-top cells, both conventional fluorocarbon and novel hydrocarbon PEM will be tested to compare electrochemical performance, PEM hydration, and catalyst and membrane degradation. Additionally, simulations will aid in the comparison and interpretation of microscale and macroscale results. For in-situ characterization of water and ion transport in the microfluidic cells, mainly fluorescence-based imaging methods will be used. For the benchtop scale, more traditional methods for membrane and cell characterization will be employed, including water uptake and proton conductivity measurements for the membrane, as well as electron microscopy and elemental analysis of membrane-electrode assemblies. By understanding the fundamentals of transport processes at micro and macro scales, our proposed novel experiments will directly contribute to the design and development of new materials and the identification of perational strategies to mitigate the degradation of PEM fuel cells and electrolyzers.
为了以环境可持续的方式满足日益增长的能源需求,德国和加拿大已将氢视为能源行业脱碳最有前途的途径之一。聚合物电解质膜(PEM)燃料电池和PEM电解槽是氢经济的关键技术。为了大规模采用这些技术,需要增强长期稳定运行和降低成本。控制持久运行的两个薄弱环节是催化剂浸出和 PEM 降解。催化剂离子的降解和浸出会对催化剂的电化学活性区域产生负面影响,降低总体反应速率并导致性能损失。更具体地说,催化剂金属离子从催化剂层移动到质子交换膜中,以及它们的再沉积,被认为是至关重要的,但对其描述却很少。该现象受到质子交换膜中水合分布的强烈影响。此外,目前在燃料电池和电解槽中使用对环境有害的碳氟化合物膜受到质疑,新型碳氢化合物膜有望取代它们。在这个项目中,我们的目标是表征不同长度尺度的聚电解质膜中水和离子传输的动力学。为了深入了解控制燃料电池和电解槽耐久性的因素,拟议项目将新颖的实验技术(例如操作中可视化、异位和事后膜表征)与数值模拟相结合。微流体模型系统将用于研究微尺度的传输现象。更大的电池包含与经典实验室规模设置相同的膜和电极材料,将提供对水合水平影响的深入了解,并充当微流体和台式规模之间的桥梁。在台式电池中,将对传统碳氟化合物和新型碳氢化合物质子交换膜进行测试,以比较电化学性能、质子交换膜水合以及催化剂和膜降解。此外,模拟将有助于微观尺度和宏观尺度结果的比较和解释。对于微流体细胞中水和离子传输的原位表征,将主要使用基于荧光的成像方法。对于台式规模,将采用更传统的膜和电池表征方法,包括膜的吸水率和质子电导率测量,以及膜电极组件的电子显微镜和元素分析。通过了解微观和宏观尺度上的传输过程的基本原理,我们提出的新颖实验将直接有助于新材料的设计和开发以及减轻 PEM 燃料电池和电解槽退化的操作策略的确定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. John Linkhorst其他文献

Professor Dr.-Ing. John Linkhorst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. John Linkhorst', 18)}}的其他基金

Microscopic particle interactions in surfacefiltration processes (MicSurF)
表面过滤过程中的微观颗粒相互作用 (MicSurF)
  • 批准号:
    514031987
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSERC-DFG Sustain: Towards Computational Design of Hydrocarbon-Based Catalyst Coated Membranes for Polymer Electrolyte Membrane Water Electrolysis (ComDeWE)
NSERC-DFG Sustain:用于聚合物电解质膜水电解的碳氢化合物基催化剂涂层膜的计算设计 (ComDeWE)
  • 批准号:
    534251491
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN - Enhanced solar-energy capture through optimization of up- and down-conversion in organic molecules
NSERC-DFG SUSTAIN - 通过优化有机分子的上转换和下转换来增强太阳能捕获
  • 批准号:
    534268920
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN Integrated development of sustainable solvent strategies for perovskite solar cells
NSERC-DFG SUSTAIN 钙钛矿太阳能电池可持续溶剂策略的综合开发
  • 批准号:
    533867117
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN: Plasma-electrification of chemical produce – towards a green circular industry with net-zero carbon output and sustainable processing (PLANET)
NSERC-DFG SUSTAIN:化学产品的等离子电气化——迈向净零碳输出和可持续加工的绿色循环产业(PLANET)
  • 批准号:
    534102992
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN: Development of Organic Photocatalyst Materials to Broaden the Use of Sustainable Photocatalysis in Organic Syntheses
NSERC-DFG SUSTAIN:开发有机光催化剂材料以拓宽可持续光催化在有机合成中的应用
  • 批准号:
    534235866
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN: Carbon materials from oil sands-derived asphaltenes for next generation sodium-ion batteries - from mechanistic investigations to life cycle analysis
NSERC-DFG SUSTAIN:用于下一代钠离子电池的来自油砂衍生沥青质的碳材料 - 从机械研究到生命周期分析
  • 批准号:
    534334554
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN: Prussian White for Sustainable Separation and Purification Technologies
NSERC-DFG SUSTAIN:普鲁士白用于可持续分离和纯化技术
  • 批准号:
    533389065
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN: SysDevOx - Systematic development of new oxidative biocatalysts for the sustainable production of pharmaceutical compounds
NSERC-DFG SUSTAIN:SysDevOx - 系统开发新型氧化生物催化剂,用于药物化合物的可持续生产
  • 批准号:
    534068048
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN: ION-SIEVING CAPACITIVE EXTRACTION OF LITHIUM from Alberta Oilfield Brine towards Sustainable Supply Chain
NSERC-DFG SUSTAIN:从阿尔伯塔油田盐水中离子筛电容萃取锂,实现可持续供应链
  • 批准号:
    534252704
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NSERC-DFG SUSTAIN: Biological and electrochemical process design for biocatalytic CO2 conversion
NSERC-DFG SUSTAIN:生物催化二氧化碳转化的生物和电化学工艺设计
  • 批准号:
    534253964
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了