Study of gemetric properties and arithmetic properties of higher dimenional algebraic varieties.
高维代数簇的几何性质和算术性质的研究。
基本信息
- 批准号:16340001
- 负责人:
- 金额:$ 6.59万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal researcher conducted a detailed study on the structure of families of rational curves on algebraic varieties, specifically on Fano manifolds with nef tangent bundles. One of the main outcome of this research is a simple characterization of quadric hypersurfaces in terms of the intersection number of anticanonical divisor and rational curves, which was published as "Numerical characterizations of hyperquadrics". The result therein not only unifies the various characterizations known to date (a theorem of Brieskorn, a theorem of Kobayashi-Ochi etc.) but also gives many further applications. He also studied the canonical degree (the intersection number with the canonical divisor) of curves on surfaces of general type in connection with a conjecture of Green-Griffiths-Lang, and proved that the canonical degree of a curve is bounded by a certain explicit function of the geometric genus of the curve and of the Chern numbers of the ambient surface, under the condition that the first Chern number is greater than the second Chern number. As a direct consequence, it follows that there are only finitely many rational and elliptic curves on such a surface (a special case of algebraic Lang conjecture). This second result is submitted under the title "A remark on a theorem of Bogomolov". The third subject of his research is the fibre space structure of complex symplectic manifolds, in which he did not get much progress.Among the works of the joint researchers, we should mention: Y.Kawamata's study on derived categories; M.Kondo's research on the moduli spaces of K3 surfaces with extra structure; T.Saito's theory of arithmetic ramifications; A.Tamagawa's work on anabelian geometry and T.Ibukiyama's research on modular forms. In particular, T.Terasoma made excellent contributions to the theory of multiple zeta values and was nominated as a speaker at the International Congress of Mathematicians, Madrid, 2006.
首席研究员对代数簇上有理曲线族的结构进行了详细的研究,特别是对具有nef切丛的Fano流形。本文的主要研究成果之一是利用反正则因子与有理曲线的交数对二次超曲面进行了一个简单的刻画,发表于《超二次曲面的数值刻画》。其中的结果不仅统一了迄今为止已知的各种特征(Brieskorn定理、Kobayashi-Ochi定理等),而且还统一了已知的各种特征(Brieskorn定理、Kobayashi-Ochi定理等)。而且还提供了许多进一步的应用。他还研究了正则度本文结合Green-Griffiths-Lang的一个猜想,讨论了一般型曲面上曲线的标准度(与标准因子的交数),证明了曲线的标准度受曲线的几何亏格和周围曲面的Chern数的显函数的约束,在第一陈氏数大于第二陈氏数的条件下。作为一个直接的结果,它遵循只有1000个合理的和椭圆曲线在这样的表面(代数朗猜想的一个特殊情况)。这第二个结果是提交的标题下“一个评论定理的Bogomolov”。他的第三个研究课题是复辛流形的纤维空间结构,在这方面他没有取得太大的进展,在合作研究者的工作中,我们应该提到:Y.Kawamata对导范畴的研究,M.Kondo对具有额外结构的K3曲面的模空间的研究,T.Saito的算术分支理论,以及Y. Kawamata对导范畴的研究。A.Tamagawa对Anabel几何的研究和T.Ibukiyama对模形式的研究。特别是T.Terasoma对多重zeta值理论做出了杰出贡献,并被提名为2006年马德里国际数学家大会的演讲者。
项目成果
期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coinvariant Algebras of Finite Subgroups of SL(3;C)
- DOI:10.4153/cjm-2004-023-4
- 发表时间:2004-06
- 期刊:
- 影响因子:0
- 作者:Yasushi Gomi;I. Nakamura;K. Shinoda
- 通讯作者:Yasushi Gomi;I. Nakamura;K. Shinoda
The cohomology groups of stable quasiabelian schemes and dgenerations associated with the E8-lattice
与 E8 格相关的稳定拟贝尔方案和退化的上同调群
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Iku NAKAMURA;Ken SUGAWARA
- 通讯作者:Ken SUGAWARA
Positivity of eta products---a certain case of K.Saito's conjecture.
eta乘积的正性——以K.Saito猜想为例。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:I.Dolgachev;B.van Geeman;S.Kondo;T.Ibukiyama
- 通讯作者:T.Ibukiyama
On the distribution of linearcodes
关于线性码的分布
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Toshiyuki KATSURA;Motoko Qui KAWAKITA
- 通讯作者:Motoko Qui KAWAKITA
Theta constants associated to caverings of P^1 branching at eight points
与 P^1 八点分支塌陷相关的 Theta 常数
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Keiji MATSUMOTO;Tomohide TERASOMA
- 通讯作者:Tomohide TERASOMA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAOKA Yoichi其他文献
MIYAOKA Yoichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAOKA Yoichi', 18)}}的其他基金
Study on effective Green conjecture
有效绿色猜想研究
- 批准号:
24540034 - 财政年份:2012
- 资助金额:
$ 6.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reviews, developments and applications of the minimal model theorem
最小模型定理的回顾、发展和应用
- 批准号:
19340003 - 财政年份:2006
- 资助金额:
$ 6.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Complex symplectic manifolds and related topics
复辛流形及相关主题
- 批准号:
12440006 - 财政年份:2000
- 资助金额:
$ 6.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
THEORY OF ALGEBRAIC VARIETIES AND APPLICATIONS TO RELATED TOPICS
代数簇理论及其相关主题的应用
- 批准号:
01540066 - 财政年份:1989
- 资助金额:
$ 6.59万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)