Further Development of Trotter Product Formulas with Problems on Path Integrals

具有路径积分问题的Trotter乘积公式的进一步发展

基本信息

  • 批准号:
    16340038
  • 负责人:
  • 金额:
    $ 6.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

In two papers in Commun.Math.Phys. 2001, Ichinose, with Hideo Tamura, Hiroshi Tamura and V.A.Zagrebnov, proved norm convergence of Trotter product formula for the operator sum of two nonnegative selfadjoint operators with optimal error bound. The present research has been done to go beyond this result, keeping in mind its relation to path integral and examples/applications of the theory of Schrodinger operators, and brought the following results.(1)Further development of Trotter product formula in norm-It is known that the norm convergence of Trotter product formula does not hold in general for the form sum of two selfadjoint operators. However, it was proved in J. Functional Analysis 2004 with some condition by Ichinose together with H. Neidhardt and V.A. Zagrebnov. It is an open problem whether the condition may be relaxed. To be unexpected,Ichinose and Hideo Tamura also discovered, in Lett. Math. Phys. 2004, norm convergence of the unitary product formula to hold for the Dirac and the relativistic SchrOdinger operator with nontrivial scalar potentials.(2)Problems of path integral and of convergence of integral kernels of the Trotter product: Fujiwara succeeded to improve the error estimate of the stationary phase method of the oscillatory integral in large dimensions, and used it to determine the second term of the semiclassical approximation to Feynman path integral. In this connection, Trotter product formula is thought to give a kind of time-sliced approximation. The good norm-convergence of Trotter product formula might suggest convergence of the integral kernels, as Ichinose and Hideo Tamura anticipated. In fact, we proved it 2004 in two papers in Commn. PDE and J. Reine Angew. Math.(3)Zeno product formula: Ichinose proved 2005 an intermediate result with P.Exner.
在Commun.Math.Phys. 2001的两篇论文中,Ichinose与Hideo Tamura,Hiroshi Tamura和V.A.Zagrebnov证明了两个非负自伴算子之和的Trotter乘积公式的范数收敛性,并给出了最优误差界。目前的研究已经做了超越这一结果,记住它的关系路径积分和例子/薛定谔算子理论的应用,并带来了以下结果。(1)Trotter乘积公式在范数意义下的进一步发展--已知Trotter乘积公式的范数收敛性对两个自伴算子的形式和一般不成立。然而,在J. Functional Analysis 2004中,Ichinose和H. Neidhardt和V.A.扎格雷布诺夫这一条件是否可以放宽是一个悬而未决的问题。出乎意料的是,一之濑和田村秀夫也发现,在Lett。数学物理2004,正规收敛的酉积公式,以保持狄拉克和相对论薛定谔算子与非平凡标量势。(2)路径积分和Trotter积积分核的收敛问题:藤原成功地改进了大维振荡积分稳相法的误差估计,并用它来确定费曼路径积分的半经典逼近的第二项。在这方面,Trotter乘积公式被认为是一种时间切片近似。Trotter乘积公式的良好范数收敛性可能暗示了积分核的收敛性,正如Ichinose和Hideo Tamura所预期的那样。事实上,我们在2004年的两篇论文中证明了这一点。PDE和J. Reine Angew.数学(3)Zeno乘积公式:Ichinose在2005年证明了P. Exner的一个中间结果。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Lp boundedness of wave operators for Schrodinger operators with threshold singularities II, Even dimensional case
具有阈值奇点的薛定谔算子的波算子的 Lp 有界性 II,偶维情况
The-second term of the semi-classical asymptotic expansion for Feynman path integrals with integrand of polynomial growth.
具有多项式增长被积函数的费曼路径积分的半经典渐近展开式的第二项。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daisuke Fujiwara;Naoto Kumano-go
  • 通讯作者:
    Naoto Kumano-go
Zeta functions for the spectrum of the non-commutative harmonic oscillators
非交换简谐振子频谱的 Zeta 函数
Hagen Neidhardt and Valentin A. Zagrebnov, Trotter-Kato product formula and fractional powers of self-adjoint generators.
Hagen Neidhardt 和 Valentin A. Zagrebnov,Trotter-Kato 乘积公式和自伴生成元的分数幂。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Suzuki;et al.;Takahiko Nakazi;Takashi Ichinose
  • 通讯作者:
    Takashi Ichinose
A product formula related to quantum zeno dynamics
  • DOI:
    10.1007/s00023-005-0203-2
  • 发表时间:
    2005-04-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Exner, P;Ichinose, T
  • 通讯作者:
    Ichinose, T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ICHINOSE Takashi其他文献

ICHINOSE Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ICHINOSE Takashi', 18)}}的其他基金

Study on quantum mechanical propagators and path integrals
量子力学传播器和路径积分研究
  • 批准号:
    20540161
  • 财政年份:
    2008
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Further Development of Trotter-Kato Product Formula in Operator Norm and Related Problems on Path Integral
算子范数下Trotter-Kato乘积公式的进一步发展及路径积分相关问题
  • 批准号:
    13440044
  • 财政年份:
    2001
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Kac Transfer Operator, the Lie-Trotter Product Formula and Related Problems
Kac 转移算子、Lie-Trotter 乘积公式及相关问题
  • 批准号:
    11440040
  • 财政年份:
    1999
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
The norm estimate of the difference between the Kac transfer operator and the Schrodinger semigroup
Kac 转移算子与薛定谔半群之间差异的范数估计
  • 批准号:
    09440053
  • 财政年份:
    1997
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Further Development of Trotter-Kato Product Formula in Operator Norm and Related Problems on Path Integral
算子范数下Trotter-Kato乘积公式的进一步发展及路径积分相关问题
  • 批准号:
    13440044
  • 财政年份:
    2001
  • 资助金额:
    $ 6.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了