The Frontier of Numerical Analysis for Dynamics of Interfaces and Developments in Sciences and Engineering
界面动力学数值分析前沿及科学与工程发展
基本信息
- 批准号:16340029
- 负责人:
- 金额:$ 10.26万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We were concerned with the following numerical methods to the phenomena appearing in the repre-sentative dynamical interfaces :i) Pattern dynamics in the reaction-diffusion system,ii) Viscous fingering phenomena in Hele-Shaw Cell,iii) Dynamical behavior of the region occupied by the water in the process of evaporation.We obtained several results :1) The TCD (Threshold Competition Dynamics) method is developed for the numerical computation in reaction-diffusion system, and enables us to realize the dynamical behavior of free boundary in R^n (n=1, 2, 3.). The idea of this method is based on the theory of "Singular limit method".2) The mathematical model for the crystal growth is considered in the, form of the reaction-diffusion equation with the effect of a convection, and gives us interesting mathematical results.3) In viscous fingering phenomena, the buoyancy-driven path instabilities of bubble rising in Hele-Shaw Cell are examined. As an interesting phenomenon there appears a wake which is similar to a comet. However, such a wake is not realized in numerical method yet.4) Multi-scale FEM based on crystallographic homogenization method is developed to predict the dynamics of interfaces in the formability of sheet metal.5) The repeated support splitting and connecting property in the process of evaporation is investigated, where the the support means the region occupied by the water. The numerical methods for this process are established and the shape of the initial distribution for which such a property appear is explicitly obtained.
本文对反应扩散系统中的斑图动力学、Hele-Shaw盒中的粘性指进现象、蒸发过程中水所占区域的动力学行为等典型动力学界面现象进行了数值模拟,得到了以下结果:1)发展了反应扩散系统中的TCD(Threshold Competition Dynamics)方法,使我们能够实现R^n(n=1,2,3.)中自由边界的动力学行为。该方法的思想是基于“奇异极限法”的理论。2)晶体生长的数学模型是考虑对流效应的反应扩散方程的形式,并给出了有趣的数学结果。3)在粘性指进现象中,研究了Hele-Shaw池中气泡上升的浮力驱动路径不稳定性。作为一个有趣的现象,出现了一个类似彗星的尾迹。4)建立了基于晶体均匀化方法的多尺度有限元方法,用于预测金属板料成形过程中的界面动力学行为。5)研究了蒸发过程中的重复支撑分裂和连接特性,其中支撑指的是水所占据的区域。建立了这一过程的数值方法,并明确地得到了这种性质出现的初始分布的形状。
项目成果
期刊论文数量(554)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical simulation of spilled oil by fictitious domain method
- DOI:10.1007/bf03167472
- 发表时间:2004-06
- 期刊:
- 影响因子:0.9
- 作者:H. Suito;H. Kawarada
- 通讯作者:H. Suito;H. Kawarada
Global solvability of constrained singular diffusion equation associated with essential variation
与本质变差相关的约束奇异扩散方程的全局可解性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Y.Giga;H.Kuroda;N.Yamazaki
- 通讯作者:N.Yamazaki
Energy-stable finite element schemes for multiphase flow problems
多相流问题的能量稳定有限元方案
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Tabata;M.
- 通讯作者:M.
Finite element approximation to infinite Prandtl number Boussinesq equations and numerical simulation of melting glass convection
无限普朗特数布辛涅斯克方程的有限元逼近及熔融玻璃对流的数值模拟
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Tabata;M.
- 通讯作者:M.
Robustness of a Characteristic Finite Element Scheme of Second Order in Time Increment
- DOI:10.1007/3-540-31801-1_22
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M. Tabata;S. Fujima
- 通讯作者:M. Tabata;S. Fujima
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOMOEDA Kenji其他文献
TOMOEDA Kenji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TOMOEDA Kenji', 18)}}的其他基金
Numerical analysis to support splitting and merging phenomena in interfacial dynamics
支持界面动力学中分裂和合并现象的数值分析
- 批准号:
23540171 - 财政年份:2011
- 资助金额:
$ 10.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Numerical Methods for Dynamics of Interfaces and its Applications to Experiments in Science and Engineering
界面动力学数值方法的发展及其在科学与工程实验中的应用
- 批准号:
13440038 - 财政年份:2001
- 资助金额:
$ 10.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Experimental, numerical and mathematical approach to the complexity of the phenomena of interfaces
界面现象复杂性的实验、数值和数学方法
- 批准号:
11440035 - 财政年份:1999
- 资助金额:
$ 10.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B).