Experimental, numerical and mathematical approach to the complexity of the phenomena of interfaces

界面现象复杂性的实验、数值和数学方法

基本信息

  • 批准号:
    11440035
  • 负责人:
  • 金额:
    $ 7.49万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

In this project we are concerned with the following phenomena.1) Pattern formation of spiral waves in the photosensitive Belousov-Zhabotinsky reaction and helical waves in self-propagating high-temperature syntheses.2) Self-organized colony patterns by a bacterial cell population.3) Hele-Shaw cell experiments of viscous fingering and bubble motion in polymeric solutions.4) Support splitting phenomena caused by the interaction between diffusion and absorption in porous medium flow.5) Prediction and analysis for the crack path in fracture mechanics6) Geometric models in crystal growth problems.We have obtained the following results.In 1) and 2) the mechanism of the pattern formation is described by the reaction-diffusion equations and are analyzed by using the method of the singular limit and the theory of bifurcation ([1], [2] , [3] , [4] , [5]).In 3) The modified Darcy's law is derived by taking account of the index of shear-thinning, and gives a good prediction of the finger velocity ([6], [7]).In 4) the mathematical models which describe such phenomena are written as the nonlinear diffusion equation with strong absorption. The sufficient conditions under which the support begins to split into two disjoint sets are obtained ([8], [9]).In 5) some formulas connecting the direction and the curvature of the smooth cracks are derived. The validity of these formulas are shown in simple examples ([10], [11]).In 6) Models of faceted crystal growth and of grain boundaries are proposed based on the gradient system with nondifferentiable energy. The mathematical basis for justifying and analyzing these models is obtained, and theoretical and numerical approaches show how the solutions of these models evolve ([12], [13], [14]).
本项目主要研究了以下现象:1)光敏Belousov-Zhabotinsky反应中螺旋波的形成和自传播高温合成中螺旋波的形成; 2)细菌细胞群的自组织菌落图案; 3)Hele-Shaw细胞实验中聚合物溶液中粘性指进和气泡运动; 4)聚合物溶液中气泡运动的研究。支持多孔介质流动中扩散与吸收相互作用引起的分裂现象。5)断裂力学中裂纹路径的预测与分析。6)晶体生长问题中的几何模型。我们得到了以下结果。在1)和2)用反应扩散方程描述了斑图的形成机理,并利用奇异极限方法和分岔理论对斑图的形成机理进行了分析([1],[2],[3],[4],[5]).(3)引入剪切稀化指数,推导出修正的达西定律,并对指状体速度进行了较好的预测([6],[7]).在4)中,描述这种现象的数学模型被写成具有强吸收的非线性扩散方程。得到了支座开始分裂为两个不相交集的充分条件([8],[9])。5)导出了光滑裂纹方向与曲率的关系式。这些公式的有效性在简单的例子中得到了证明([10],[11])。6)基于不可微能量梯度系统,提出了小面晶体生长和晶界生长的模型。得到了证明和分析这些模型的数学基础,理论和数值方法显示了这些模型的解是如何演变的([12],[13],[14])。

项目成果

期刊论文数量(217)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Ikeda and T.Ikeda: "Bifurcation phenomena from standing pulse solutions of bistable reaction-diffusion systems"Journal of Dynamics and Differential Equations. 12. 117-167 (2000)
H.Ikeda 和 T.Ikeda:“双稳态反应扩散系统的驻脉冲解的分岔现象”动力学与微分方程杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ikeda,H.Ikeda and M.Mimura: "Hopf bifurcation of traveling pulses in some bistable reaction-diffusion systems"Methods and Applications of Analysis. 7. 165-194 (2000)
T.Ikeda、H.Ikeda 和 M.Mimura:“某些双稳态反应扩散系统中行进脉冲的 Hopf 分岔”分析方法和应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Giga and K.Ito: "Loss of convexity of simple closed curves moved by surface diffusion, Topics in Nonlinear Analysis"The Herbert Amann Aniversary volume, (eds.J.Escher and G.Simonett), Progress in Nonlinear Differential Equations, Birkhauser. 305-320 (19
Y.Giga 和 K.Ito:“表面扩散移动的简单闭合曲线的凸性损失,非线性分析主题”赫伯特·阿曼周年纪念卷,(J.Escher 和 G.Simonett 编辑),非线性微分方程进展,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Amemiya,T.Ohmori,M.Nakaiwa,T.Yamamoto and T.Yamaguchi: "Modeling of nonlinear chemical reaction systems and two-parameter stochastic resonance"J.Biol.Phys.. 25. 73-85 (1999)
T.Amemiya、T.Ohmori、M.Nakaiwa、T.Yamamoto 和 T.Yamaguchi:“非线性化学反应系统和二参数随机共振的建模”J.Biol.Phys.. 25. 73-85 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TOMOEDA Kenji其他文献

TOMOEDA Kenji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TOMOEDA Kenji', 18)}}的其他基金

Numerical analysis to support splitting and merging phenomena in interfacial dynamics
支持界面动力学中分裂和合并现象的数值分析
  • 批准号:
    23540171
  • 财政年份:
    2011
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Frontier of Numerical Analysis for Dynamics of Interfaces and Developments in Sciences and Engineering
界面动力学数值分析前沿及科学与工程发展
  • 批准号:
    16340029
  • 财政年份:
    2004
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Numerical Methods for Dynamics of Interfaces and its Applications to Experiments in Science and Engineering
界面动力学数值方法的发展及其在科学与工程实验中的应用
  • 批准号:
    13440038
  • 财政年份:
    2001
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
  • 批准号:
    2337666
  • 财政年份:
    2024
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
  • 批准号:
    2348164
  • 财政年份:
    2024
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Continuing Grant
Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
  • 批准号:
    2309520
  • 财政年份:
    2023
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Standard Grant
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
  • 批准号:
    23K13013
  • 财政年份:
    2023
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of reaction-diffusion based neural network systems
基于反应扩散的神经网络系统的开发
  • 批准号:
    23H00506
  • 财政年份:
    2023
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Reaction-Diffusion Kinetics with Tensor Networks
职业:张量网络的反应扩散动力学
  • 批准号:
    2239867
  • 财政年份:
    2023
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Standard Grant
Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
  • 批准号:
    23K03176
  • 财政年份:
    2023
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalising Reaction-Diffusion and Turing Patterning Systems
概括反应扩散和图灵图案系统
  • 批准号:
    2747341
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Studentship
On some nonlinear reaction diffusion equation arising in population genetics
群体遗传学中一些非线性反应扩散方程的探讨
  • 批准号:
    22K03369
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of solution dynamics for time-fractional reaction-diffusion equations and systems
时间分数反应扩散方程和系统的解动力学分析
  • 批准号:
    22K13954
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了