Geometric Structure of Multi-dimensional Chaos and Its Application to Reactions in Non-equilibrium
多维混沌的几何结构及其在非平衡反应中的应用
基本信息
- 批准号:16340113
- 负责人:
- 金额:$ 10.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have formulated the dynamical theory of reactions based on the concept of normally hyperbolic invariant manifolds (NHIMs). This enables us to obtain a mathematically firm foundation of the concept of "transition states" in reaction processes. Moreover, it offers a possibility of going over the conventional ideas of reactions. The first is the possibility of breakdown of the normal hyperbolicity caused by chaos on the NHIM. Note that normal hyperbilicity means that instability along the normal directions is larger than that along the tangential directions. However, when chaos on the NHIM becomes comparable to the instability along the normal directions, the normal hyperbolicity is at the edge of breaking down. We have constructed a model system where this phenomenon can be analyzed using the Lie transformation and Pade summation. The breakdown means, in the context of reactions, that a new set of degrees of freedom start to contribute collective degrees of freedom describing reactions. This opens a new horizon in studying the reaction processes. The second achievement is to indicate that a power-law behavior is observed when the dynamics in the potential well is non-ergodic. We have constructed a model where the Arnold web in the well is sparse and non-uniform. The distribution of residence times exhibit a power-law properties and the dynamics in the well show anomalous diffusion. These phenomena indicate that the traditional concept of the reaction rate constat does not exists any more. The above two aspects of the reaction processes indicate that the dynamical theory of reactions offer a new possibility of understanding reactions.
我们建立了基于正常双曲不变流形(NHIM)概念的反应动力学理论。这使我们能够在数学上为反应过程中的“过渡态”概念奠定坚实的基础。此外,它还提供了一种对反应的传统观点进行回顾的可能性。第一个问题是NHIM上的混沌导致正常双曲度破裂的可能性。请注意,正常的超高涡度意味着沿法向方向的不稳定性大于沿切向方向的不稳定性。然而,当NHIM上的混沌变得与法线方向的不稳定性相当时,正常双曲性处于崩溃的边缘。我们已经建立了一个模型系统,可以用Lie变换和Pade求和来分析这一现象。分解意味着,在反应的背景下,一组新的自由度开始贡献描述反应的集体自由度。这为研究反应过程开辟了一个新的视野。第二个成果是,当势垒中的动力学是非遍历的时,观察到了幂定律行为。我们建立了一个模型,其中井中的阿诺德腹板是稀疏的和非均匀的。驻留时间分布呈幂函数分布,井内动力学表现为反常扩散。这些现象表明,传统的反应速率常数概念已不复存在。反应过程的上述两个方面表明,反应动力学理论为理解反应提供了一种新的可能性。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Foundation and Limitations of Statistical Reaction Theory
统计反应理论的基础和局限性
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Shojiguchi;Li;Komatsuzaki;Toda
- 通讯作者:Toda
Dimension reduction for extracting geometrical structure of multidimensional phase space : Application to fast energy exchange in the reactionO(^1D)+N_2O→NO+NO
用于提取多维相空间几何结构的降维:应用于反应中的快速能量交换 O(^1D)+N_2O→NO+NO
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Shinnosuke Kawai;Yo Fujimura;Okitsugu Kajimoto;Takefumi Yamashita,Chun Biu Li;Tamiki Komatsuzaki;and Mikito Toda
- 通讯作者:and Mikito Toda
Fractional Behavior in Multi-Dimensional Hamiltonian Systems Describing Reactions
描述反应的多维哈密顿系统中的分数行为
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Akira Shojiguchi;Chun Biu Li;Tamiki Komatsuzaki;and Mikito Toda
- 通讯作者:and Mikito Toda
Fractionalbehavior in nonergodic reaction processesof isomerization
异构化非遍历反应过程中的分数行为
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Akira Shojiguchi;Chun Biu Li;Tamiki Komatsuzaki;and Mikito Toda
- 通讯作者:and Mikito Toda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TODA Mikito其他文献
Time series analysis for multi-dimensional dynamical systems combining wavelet transformation and local principal component analysis
结合小波变换和局部主成分分析的多维动力系统时间序列分析
- DOI:
10.1093/ptep/ptz129 - 发表时间:
2019 - 期刊:
- 影响因子:3.5
- 作者:
FUJI Kana;TODA Mikito - 通讯作者:
TODA Mikito
Time series analysis of Dynamics using wavelet transformation and dimensional reduction
使用小波变换和降维进行动力学时间序列分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
KAMBE Mai;FUJI Kana;TODA Mikito;TODA Mikito - 通讯作者:
TODA Mikito
Time Series Analysis using Wavelet for Hamiltonian Dynamical Systems
使用小波进行哈密顿动力系统的时间序列分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
KAMBE Mai;FUJI Kana;TODA Mikito - 通讯作者:
TODA Mikito
Time Series Analysis of Dynamical Systems
动力系统的时间序列分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
下村真唯;島伸一郎;戸田幹人;TODA Mikito - 通讯作者:
TODA Mikito
多自由度ハミルトン系に対する wavelet local PCA
多自由度哈密顿系统的小波局部主成分分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
KAMBE Mai;FUJI Kana;TODA Mikito;TODA Mikito;戸田幹人 - 通讯作者:
戸田幹人
TODA Mikito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TODA Mikito', 18)}}的其他基金
Research on the mechanism of robust manifestation of biological functions under fluctuating environment
波动环境下生物功能稳健表现的机制研究
- 批准号:
22654047 - 财政年份:2010
- 资助金额:
$ 10.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Dynamics of few-body quantum systems and chaos
少体量子系统动力学和混沌
- 批准号:
10640366 - 财政年份:1998
- 资助金额:
$ 10.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
- 批准号:18670411
- 批准年份:1986
- 资助金额:0.55 万元
- 项目类别:面上项目
相似海外基金
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
- 批准号:
23K03355 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
- 批准号:
23K16963 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
- 批准号:
2306332 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Standard Grant
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
- 批准号:
EP/Y01653X/1 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Fellowship
Wasserstein-Type Gradient Flow via Propagation by Chaos for a Continuous Formulation of a Shallow Neural Network
通过混沌传播的 Wasserstein 型梯度流用于连续制定浅层神经网络
- 批准号:
2879236 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Studentship
Development of an optimization method using chaos for spin devices
开发利用混沌的自旋器件优化方法
- 批准号:
23KJ0331 - 财政年份:2023
- 资助金额:
$ 10.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 10.18万 - 项目类别:
Research Grant














{{item.name}}会员




