Explanation of fracture phenomena by crack extension analysis using extended finite element method

使用扩展有限元法通过裂纹扩展分析解释断裂现象

基本信息

  • 批准号:
    16360226
  • 负责人:
  • 金额:
    $ 3.78万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

Extended finite element method (X-FEM) was first developed by Belytcheko et al. in 1996 for the linear elastic fracture mechanics to avoid awkward remeshing near a crack tip as the crack grows. The key idea of the extended finite element method is that the unknown variables of discontinuous displacement are added to the nodal continuous displacements so that the crack can extend across the element. The method was, however, restricted only to the cracks in the linear elastic material.With the aim of analyzing the fracture of geomaterials, we develop a new extended finite element method(X-FEM) available to an elastic-plastic material. We analyzes the stress distributions near a crack tip for the Drucker-Prager elastic-plastic material in a rectangular plate with a centered crack under two axial compressive loads. The elastic-plastic material is analyzed by the implicit return mapping algorithm, which gives a high accuracy and much reduces CPU time by using an incremental and iterative method of the Newton-Raphson method.Under the compressive loads there exist friction forces along the crack faces. In solving this contact problem, we introduce a new method which conform to the extended finite element method. The friction forces are assumed to follow the elastic-perfect plastic material with Coulomb law for the slip criterion. The friction problem is also analyzed in the context of an implicit return mapping algorithm.Thus the contact problem and the elastic-plastic material become a simultaneous combining incremental and iterative method of the same implicit scheme of the Newton-Raphson method. This makes the algorithm very simple.The stress distributions near the crack tip obtained by the simple X-FEM agree very well with the reliable solutions in the classical FEM solution for the elastic-plastic material. For the future, therefore, we anticipate a practical application of this new method such as a land slide.
扩展有限元法(X-FEM)首先由 Belytcheko 等人开发。 1996 年,用于线性弹性断裂力学,以避免随着裂纹扩展而在裂纹尖端附近进行笨拙的重新网格化。扩展有限元方法的关键思想是将不连续位移的未知变量添加到节点连续位移中,使得裂纹能够延伸穿过单元。然而,该方法仅限于线弹性材料中的裂纹。为了分析岩土材料的断裂,我们开发了一种新的适用于弹塑性材料的扩展有限元方法(X-FEM)。我们分析了具有中心裂纹的矩形板中 Drucker-Prager 弹塑性材料在两个轴向压缩载荷下裂纹尖端附近的应力分布。采用隐式返回映射算法对弹塑性材料进行分析,该算法使用牛顿-拉夫森法的增量迭代方法,精度高,大大减少了CPU时间。在压缩载荷作用下,沿裂纹面存在摩擦力。在解决这个接触问题时,我们引入了一种符合扩展有限元法的新方法。假定摩擦力遵循完美弹性塑料材料,并采用库仑定律作为滑动准则。摩擦问题也在隐式返回映射算法的背景下进行了分析。因此,接触问题和弹塑性材料成为牛顿-拉夫森方法相同隐式格式的同时结合增量和迭代的方法。这使得算法变得非常简单。通过简单的X-FEM获得的裂纹尖端附近的应力分布与弹塑性材料的经典FEM解中的可靠解非常吻合。因此,在未来,我们预计这种新方法将得到实际应用,例如滑坡。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy release rate analisis of crack extension under compressive loads by the X-FEM
X-FEM 压缩载荷下裂纹扩展的能量释放率分析
Finite element analysis stress fields near a Crack tip in Cam-Clay Plasticity using implicit Soil/water coupling elastic-plastic calculation algorithm
使用隐式土/水耦合弹塑性计算算法对 Cam-Clay 塑性中裂纹尖端附近的应力场进行有限元分析
圧縮荷重下における亀裂進展時のエネルギ解放率のX-FEM解析
压缩载荷下裂纹扩展过程中能量释放率的 X-FEM 分析
The Drvelopment of the Extended Finite Element Method targeting Disaster Prevention, as well as Earthquake and Slope Disintegration Prediction
防灾、地震和边坡崩解预测的扩展有限元方法的发展
陰解法リターンマップ手法を用いた圧縮荷重下における亀裂先端近傍応力場の弾塑性X-FEM解析
使用隐式返回图法对压缩载荷下裂纹尖端附近的应力场进行弹塑性 X-FEM 分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YATOMI Chikayoshi其他文献

YATOMI Chikayoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YATOMI Chikayoshi', 18)}}的其他基金

Fracture mechanical explanation of ground disaster using a discontinuous finite element method
使用不连续有限元方法解释地面灾害的断裂力学
  • 批准号:
    19310120
  • 财政年份:
    2007
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of the Landslip by the Bifurcation Theory and the Finite Element Method using Incompatible Elements
用分岔理论和不相容元有限元法研究山体滑坡
  • 批准号:
    11450181
  • 财政年份:
    1999
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Substantiation on Shear Resisting Mechanism of Damaged Concrete Members Based on Micro-Structural Interactive Fracture Mechanics
基于微观结构交互断裂力学的混凝土损伤构件抗剪机理验证
  • 批准号:
    23H01493
  • 财政年份:
    2023
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding Mixed-Mode Fracture Mechanics in Additively Manufacturable Functionally Graded Microcellular Solids
了解可增材制造的功能梯度微孔固体中的混合模式断裂力学
  • 批准号:
    2317406
  • 财政年份:
    2023
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
  • 批准号:
    RGPIN-2020-06550
  • 财政年份:
    2022
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring ultimate mechanical characteristics of polymers, from molecular to fracture mechanics
探索聚合物的最终机械特性,从分子力学到断裂力学
  • 批准号:
    2210184
  • 财政年份:
    2022
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Standard Grant
On new developments of Isogeometric Analysis (IGA) for highly accurate and efficient fracture mechanics analysis
等几何分析(IGA)的新发展,用于高精度和高效的断裂力学分析
  • 批准号:
    22K03879
  • 财政年份:
    2022
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification of internal swelling reaction mechanism from the viewpoint of fracture mechanics and proposition of assessment methodology of structural performance
从断裂力学角度阐明内部膨胀反应机理并提出结构性能评估方法
  • 批准号:
    21H01407
  • 财政年份:
    2021
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modelling wood fracture mechanics in primary wood products manufacturing
对初级木制品制造中的木材断裂力学进行建模
  • 批准号:
    RGPIN-2015-03653
  • 财政年份:
    2021
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Discovery Grants Program - Individual
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
  • 批准号:
    RGPIN-2020-06550
  • 财政年份:
    2021
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Discovery Grants Program - Individual
Effects of Bone Geometry and Bone Quality on Fracture Mechanics in a Femoral Fracture Model
股骨骨折模型中骨几何形状和骨质量对骨折力学的影响
  • 批准号:
    519507-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Three-Dimensional Mixed-Mode Fracture Mechanics Methodologies for Structural Integrity Assessments of Welded Structures
用于焊接结构结构完整性评估的三维混合模式断裂力学方法
  • 批准号:
    RGPIN-2020-06550
  • 财政年份:
    2020
  • 资助金额:
    $ 3.78万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了