Self-avoiding processes and self-repelling processes on fractals
分形上的自回避过程和自排斥过程
基本信息
- 批准号:16540101
- 负责人:
- 金额:$ 1.91万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We constructed a family of self-repelling walks on the pre-Sierpinski gasket and on the 1-dimensional Euclidean space, respectively, which continuously interpolates between the simple random walk and a self-avoiding walk It is a one-parameter family with parameter u, and u=0 corresponds to a self avoiding walk, u=1 to the simple random walk and 0<u<1 to self-repelling walks The asymptotic behaviors of the walks have been obtained in terms of displacement exponents and a law of iterated logarithms. The result can further be extended to self-attracting walks, with u>1. Our method is based on renormalization group and we found that we can construct more general stochastic chains, using this method. The asympotitic behaviors are obtained in a parallel manner.We studied also the recurrence of the stochastic chains constructed by renormalization group method and obtained a sufficient condition for recurrence. In particular, we proved the above mentioned family of self-repelling and self-attracting walks are recurrent if u>0. We also proved that there is a positive constant c>1 such that the expected return time to the origin is infinite for 0<u<c. This implies that there is a unique, sigma-finite, ergodic invariant measure on the infinite-length path space on the Sierpinski gasket and the 1-dimensional Euclidean space.
We constructed a family of self-repelling walks on the pre-Sierpinski gasket and on the 1-dimensional Euclidean space, respectively, which continuously interpolates between the simple random walk and a self-avoiding walk It is a one-parameter family with parameter u, and u=0 corresponds to a self avoiding walk, u=1 to the simple random walk and 0<u<1 to self-repelling walks The asymptotic behaviors of步行是根据位移指数和迭代对数定律获得的。结果可以进一步扩展到自> 1的自我吸引步行。我们的方法基于重新归化组,我们发现我们可以使用此方法构建更通用的随机链。我们还研究了通过重新归一化组构建的随机链的复发,并获得了足够的复发条件。特别是,如果u> 0,我们证明了上述自我重复和自我吸引步行的家族是经常出现的。我们还证明存在一个正常数c> 1,因此对于0 <u <c,对原点的预期返回时间是无限的。这意味着在Sierpinski垫圈和一维欧几里得空间上的无限长度路径空间上有一个独特的,sigma-finite的,恒星的不变度。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The hydrodynamic limit of the stochastic ranking processes
随机排序过程的流体动力学极限
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Recurrence of self-repelling and self-attracting walks on the pre-Sierpinski gasket
前谢尔宾斯基垫片上自排斥和自吸引游走的重复出现
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:M. Denker;K. Hattori;M. Denker and K. Hattori
- 通讯作者:M. Denker and K. Hattori
Stochastic ranking processの流体力学極限
随机排序过程的流体力学极限
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:K.Hattori;T.Hattori;服部 久美子
- 通讯作者:服部 久美子
Recurrence of self-repelling and self-attracting walks on the pre-Sierpinski gasket and Z
前谢尔宾斯基垫片和 Z 上反复出现自排斥和自吸引游动
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:M. Denker;K. Hattori
- 通讯作者:K. Hattori
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HATTORI Kumiko其他文献
HATTORI Kumiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HATTORI Kumiko', 18)}}的其他基金
Self-avoiding walk on the high-dimensional Sierpinski gaskets and random trees
在高维谢尔宾斯基垫片和随机树上自回避行走
- 批准号:
11640110 - 财政年份:1999
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-avoiding walk and its continuum'limit on fractals and geometric figures defined by conformal mappings
共形映射定义的分形和几何图形的自回避行走及其连续体极限
- 批准号:
09640255 - 财政年份:1997
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Developing Statistical Mechanics of Polymer Gels Based on Self-Avoiding Walk
基于自回避行走的聚合物凝胶统计力学发展
- 批准号:
22K13973 - 财政年份:2022
- 资助金额:
$ 1.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2018
- 资助金额:
$ 1.91万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2017
- 资助金额:
$ 1.91万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2016
- 资助金额:
$ 1.91万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2015
- 资助金额:
$ 1.91万 - 项目类别:
Discovery Grants Program - Individual