Study on Chaotic transport phenomena
混沌输运现象研究
基本信息
- 批准号:16540351
- 负责人:
- 金额:$ 2.08万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This study is the fundamental research of chaotic transport processes, namely, we would like to clarify the problem that what kind of physical process exits under various dissipative structures due to chaos or turbulance. In other words, we would like to elucidate chaos dynamical system and turbulence in a point of the statistical thermodyanmical and more physical properties such as viscosity, energy dissipation, heat production and entropy production.Concretely, we have performed the projection operator method to the nonlinear deterministic equations which bring about chaos or turbulence. Then we have obtained the statistical differential equations with the fluctuating force, leading to the transport coefficients. We have tried to certify the existence of the chaotic transport processes together with the chaotic transport coefficients, and elucidate its physical meanings.First, we have treated the Duffing oscillators as a typical dissipative dynamical chaotic system and the Henon-Heiles system as a typical conservative chaotic system. We have calculated the memory function and memory spectra with frequencies and obtained the relation between the power spectra of the state variables and the memory spectra. To sum up, we have clarified that main peaks in the power specara of the state variables, which produced by chaos, may be represented by the superposition of the asymmetric Lorentzians and the structure of the peak have a definite relationship with the memory spectra.
本研究是混沌输运过程的基础研究,即我们想要弄清楚在各种耗散结构下由于混沌或湍流导致的物理过程存在什么样的问题。换句话说,我们希望从统计热力学和更多的物理性质如粘度、能量耗散、产热和熵产等方面阐明混沌动力系统和湍流。具体地说,我们对引起混沌或湍流的非线性确定性方程应用了投影算子法。在此基础上,我们得到了脉动力下的统计微分方程,从而得到了输运系数。我们试图证明混沌输运过程和混沌输运系数的存在性,并阐明其物理意义。首先,我们将Duffing振子视为典型的耗散动力混沌系统,将Henon-Heiles系统视为典型的保守混沌系统。计算了随频率变化的记忆函数和记忆谱,得到了状态变量的功率谱与记忆谱的关系。综上所述,我们阐明了混沌产生的状态变量幂谱中的主峰可以用不对称洛伦兹子的叠加来表示,并且峰的结构与记忆谱有一定的关系。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Duffing振動子系のパワースペクトルとカオス誘導輸送係数
杜芬振子系统的功率谱和混沌诱导输运系数
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:富永 広貴;石崎 龍二;黒木 昌一;森 信之;森 肇
- 通讯作者:森 肇
Chaotic Randomization of the Rossler System and the Lorenz System
Rossler 系统和 Lorenz 系统的混沌随机化
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:N.;Mori;H.;Tominaga;R.;Ishizaki;S.;Kuroki;H.;Mori
- 通讯作者:Mori
Memory Function and Chaos-induced Friction Coefficients of the Nonautonomous Dissipative Dynamical System
非自主耗散动力系统的记忆功能和混沌摩擦系数
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H.;Tominaga;H.;Mori;R.;Ishizaki;S.;Kuroki;N.;Mori
- 通讯作者:Mori
射影演算子法による低次元系カオスのランダム化構造
使用投影算子方法的低维混沌系统随机化结构
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:森 信之;森 肇;富永 広貴;石崎 龍二;黒木 昌一
- 通讯作者:黒木 昌一
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOMINAGA Hirotaka其他文献
TOMINAGA Hirotaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Transport Phenomena and the Uptake of Foreign Species during Crystal Growth
职业:晶体生长过程中的传输现象和外来物质的吸收
- 批准号:
2339644 - 财政年份:2024
- 资助金额:
$ 2.08万 - 项目类别:
Continuing Grant
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
- 批准号:
23K03274 - 财政年份:2023
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
- 批准号:
2349122 - 财政年份:2023
- 资助金额:
$ 2.08万 - 项目类别:
Standard Grant
Novel Thermal Transport Phenomena in Quantum Materials
量子材料中的新型热传输现象
- 批准号:
2317618 - 财政年份:2023
- 资助金额:
$ 2.08万 - 项目类别:
Continuing Grant
Deep Learning for Understanding Multiscale Particle Transport Phenomena Inside Fuel Cells
用于理解燃料电池内部多尺度粒子传输现象的深度学习
- 批准号:
22KF0042 - 财政年份:2023
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Interfacial quantum transport phenomena in heterostructures of topological insulators
拓扑绝缘体异质结构中的界面量子输运现象
- 批准号:
22KJ0902 - 财政年份:2023
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Solid-liquid-vapor interfacial transport phenomena coupled with wetting/condensation/evaporation
固-液-汽界面传输现象与润湿/冷凝/蒸发相结合
- 批准号:
22H01416 - 财政年份:2022
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research Initiation Award: A Boltzmann Model for Multi-Scale and Multi-Physics/Chemistry Transport Phenomena in Porous Media
研究启动奖:多孔介质中多尺度和多物理/化学输运现象的玻尔兹曼模型
- 批准号:
2200515 - 财政年份:2022
- 资助金额:
$ 2.08万 - 项目类别:
Standard Grant
Development of Thermal Contact Resistance Prediction Formula Considering Details of Heat Transport Phenomena in Solid-Solid Contact Surface
考虑固-固接触表面传热现象细节的热接触热阻预测公式的开发
- 批准号:
22K03949 - 财政年份:2022
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental Study on Transport Phenomena of Spatiotemporal Chaos Using Nematic Electroconvection
向列电对流时空混沌输运现象的实验研究
- 批准号:
22K03469 - 财政年份:2022
- 资助金额:
$ 2.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




