Development of evolutionary multiobjective optimization algorithms that can automatically adjust the balance between diversity and convergence

开发能够自动调节多样性和收敛性之间平衡的进化多目标优化算法

基本信息

  • 批准号:
    17300075
  • 负责人:
  • 金额:
    $ 9.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

In this research, we first examined the number of overlapping solutions during the execution of NSGA-II. Whereas only a few overlapping solutions were included in each population of NSGA-II in computational experiments on multiobjective problems with continuous decision variables, we observed many overlapping solutions in the application of NSGA-II to combinatorial multiobjective problems. Thus we examined the effects of removing overlapping solutions from each population in the decision and objective spaces. The removal of overlapping solutions, however, did not significantly improve the performance of NSGA-II. We only observed a slight increase in the diversity of solutions. Next we combined a scalar fitness function (e.g., weighted sum) into NSGA-II. More specifically, we implemented an idea of probabilistically using a scalar fitness function in NSGA-II for parent selection and generation update. Computational experiments on various multiobjective problems clearly demonstrated that the probabilistic use of a scalar fitness function drastically improved the performance of NSGA-II. Then we proposed an idea of using multiple similar scalar fitness functions in order to concentrate the multiobjective search of NSGA-II on a particular region in the objective space. This idea worked very well in searching for Pareto-optimal solutions in a small region of the objective space. The proposed idea also worked well in the search for optimal solutions of single-objective problems by multiobjective optimization techniques. Finally we tried to improve the performance of existing evolutionary optimization algorithms. We showed that the use of non-geometric crossover and similarity-based parent selection clearly improved the performance of NSGA-II. We also proposed an iterated version of indicator-based evolutionary algorithms in order to improve their scalability to multiobjective problems with many objectives.
在这项研究中,我们首先研究了在执行NSGA-II的重叠解决方案的数量。而只有少数重叠的解决方案,包括在每个人口的NSGA-II在计算实验中的多目标问题与连续的决策变量,我们观察到许多重叠的解决方案,在应用NSGA-II组合多目标问题。因此,我们研究了从决策空间和目标空间中的每个种群中删除重叠解决方案的效果。然而,去除重叠的解决方案,并没有显着提高NSGA-II的性能。我们只观察到解决方案的多样性略有增加。接下来,我们结合标量适应度函数(例如,NSGA-II中。更具体地说,我们实现了一个想法的概率使用标量适应度函数在NSGA-II的父选择和世代更新。各种多目标问题的计算实验清楚地表明,概率使用标量适应度函数大大提高了NSGA-II的性能。然后,我们提出了使用多个相似的标量适应度函数的思想,以集中在目标空间中的特定区域的NSGA-II的多目标搜索。这个想法在目标空间的一个小区域中搜索帕累托最优解时非常有效。所提出的想法也很好地在搜索单目标问题的最优解的多目标优化技术。最后,我们试图改善现有的进化优化算法的性能。我们发现,使用非几何交叉和基于相似性的亲本选择明显提高了NSGA-II的性能。我们还提出了一个迭代版本的基于指标的进化算法,以提高其可扩展性,多目标问题与许多目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Objective Machine Learning
  • DOI:
    10.1007/3-540-33019-4
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yaochu Jin
  • 通讯作者:
    Yaochu Jin
Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems
多目标背包问题的部分拉马克修复演化多目标算法的空间实现
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hisao;Ishibuchi
  • 通讯作者:
    Ishibuchi
Comparison between Single-Objective and Multi-Objective Genetic Algorithms: Performance Comparison and Performance Measures
Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobiective knapsack problems
多目标背包问题的部分拉马克修复演化多目标算法的空间实现
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hisao;Ishibuchi;Hisao Ishibuchi
  • 通讯作者:
    Hisao Ishibuchi
Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms
  • DOI:
    10.1007/11844297_50
  • 发表时间:
    2006-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Ishibuchi;Tsutomu Doi;Y. Nojima
  • 通讯作者:
    H. Ishibuchi;Tsutomu Doi;Y. Nojima
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHIBUCHI Hisao其他文献

ISHIBUCHI Hisao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHIBUCHI Hisao', 18)}}的其他基金

Proposal of an Interactive Evolutionary Algorithm with No Explicit Numerical Evaluation of Solutions by a Human User
无需人类用户对解决方案进行显式数值评估的交互式进化算法的提案
  • 批准号:
    23650119
  • 财政年份:
    2011
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development and applications of an evolutionary multiobjective optimization algorithm for many-objective problems
多目标问题的进化多目标优化算法的开发与应用
  • 批准号:
    20300084
  • 财政年份:
    2008
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an Evolutionary Multiobjective Local Search Algorithm and Its Application to Scheduling Problems
进化多目标局部搜索算法的发展及其在调度问题中的应用
  • 批准号:
    14380194
  • 财政年份:
    2002
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Training Private ML with Genetic Algorithms
使用遗传算法训练私人机器学习
  • 批准号:
    580504-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.22万
  • 项目类别:
    University Undergraduate Student Research Awards
LEAPS-MPS: A Systematic and Automatic Spectral Analysis of Physical Conditions of Circumgalactic Medium using Genetic Algorithms;
LEAPS-MPS:使用遗传算法对环绕银河系介质的物理条件进行系统自动光谱分析;
  • 批准号:
    2213494
  • 财政年份:
    2022
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Standard Grant
Fitting of inter-atomic potentials with genetic algorithms
用遗传算法拟合原子间势
  • 批准号:
    539169-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 9.22万
  • 项目类别:
    University Undergraduate Student Research Awards
shape optimization of a wind turbin with a corrugate wing Using Genetic Algorithms.
使用遗传算法对带有波纹翼的风力涡轮机进行形状优化。
  • 批准号:
    17K18322
  • 财政年份:
    2017
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Optimizing plant settings using genetic algorithms, unsupervised and supervised learning
使用遗传算法、无监督和监督学习优化工厂设置
  • 批准号:
    483751-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 9.22万
  • 项目类别:
    University Undergraduate Student Research Awards
Using Genetic Algorithms for Well Scheduling
使用遗传算法进行井调度
  • 批准号:
    483768-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 9.22万
  • 项目类别:
    University Undergraduate Student Research Awards
Diversity Measurement and its Application to Selection Strategies in Genetic Algorithms
多样性测量及其在遗传算法选择策略中的应用
  • 批准号:
    15K00347
  • 财政年份:
    2015
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Net-Zero House Design for Mass Production: Energy and Cost Optimization Using Genetic Algorithms
大规模生产的净零房屋设计:使用遗传算法优化能源和成本
  • 批准号:
    445903-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Industrial Postgraduate Scholarships
Analyzing house appliance data using genetic algorithms and neural nets
使用遗传算法和神经网络分析家用电器数据
  • 批准号:
    468046-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Engage Grants Program
DMREF: Collaborative: Computationally Driven Discovery and Engineering of Multiblock Polymer Nanostructures Using Genetic Algorithms
DMREF:协作:使用遗传算法计算驱动的多嵌段聚合物纳米结构的发现和工程
  • 批准号:
    1332842
  • 财政年份:
    2013
  • 资助金额:
    $ 9.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了