A basic study on signal processing and restoration using Clifford algebra

利用克利福德代数进行信号处理和恢复的基础研究

基本信息

  • 批准号:
    17500001
  • 负责人:
  • 金额:
    $ 2.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

Digital signal processing is the theory of matrices related to unitary matrices. The goal of this research is a basic study to investigate the possibility for extending the field of complex numbers on which the existing many methods of signal processings are based to the Clifford algebra, the fields of quaternion and hyper complex numbers. We investigated precisely discrete Fourier Transform (DFT) from the point of view for symmetry groups, we found a relation between 2-dimesional DFT and permutations. From the point of view we investigated to extend the results to general unitary matrices which have intrinsically symmetries with more than 2 order. The extension of DFT to quaternions and Clifford algebra is done by replaced the imaginary units by three units vectors of quaternions, but this extension is intrinsically related to a permutation with order 2. Therefore, the extension along this idea cannot be applied to general unitary matrices which have symmetries with more than 2 order. … More In this research, we investigated basically and theoretically to extend complex numbers to quaternions and Clifford algebra for unitary matrices of which eigenvalues are of finite orders., and we found the possibility of theoretical extension. When the unitary matrices have the symmetry of e order for one-dimensional signals, applying these unitary matrices to two-dimensional signals, we have a symmetry of e^2 order. But without reducing the symmetry of e^2 order, using e^2 volume elements of Clifford algebra Cl_n, it is indicated that we may not be able to embed unitary matrices into C4-matrices so that we can keep the symmetry of e^2 order. Using a subset B of which elements are disjoint bivectors each other, and the commutative subalgebra R_<2n,o>^+, it yields the reduction of the symmetry of e^2 order, but this embedding to Cl_n,-matrices still keeps about a half of e^2 symmetries. When the symmetries of two-dimensional signals are of more than 2 order, we can investigate the symmetries by Kronecker product for Cl_n-matrices, and but, for more than three-dimensional signals, we have to use tensor product for embedding unitary matrices to C4-matrices. This problem is still open. We shall study the problems. Less
数字信号处理是与酉矩阵相关的矩阵理论。本研究的目的是探讨将现有的许多信号处理方法所基于的复数域扩展到Clifford代数、四元数和超复数域的可能性。我们从对称群的角度研究了精确离散傅立叶变换(DFT),发现了二维DFT与置换之间的关系。从这个角度出发,我们研究了将结果推广到具有2阶以上本质对称的一般酉矩阵。将DFT推广到四元数和Clifford代数是通过用四元数的三个单位向量代替虚单位来实现的,但这种推广本质上与2阶置换有关。因此,沿着这个思想的推广不能应用于具有大于2阶对称性的一般酉矩阵。在本研究中,我们从基本和理论上探讨了将复数推广到四元数和Clifford代数中特征值为有限阶的酉矩阵的问题。我们发现了理论延伸的可能性。当酉矩阵对一维信号具有e阶对称性时,将这些酉矩阵应用于二维信号,我们就有了e^2阶对称性。但在不降低e^2阶对称性的情况下,利用Clifford代数Cl_n的e^2体积元,我们可能无法将酉矩阵嵌入到c4矩阵中,从而保持e^2阶的对称性。利用元素互为不相交双向量的子集B和交换子代数R_<2n, 0 >^+,得到了e^2阶对称性的约简,但这种嵌入到Cl_n,-矩阵中仍然保持了大约一半的e^2对称性。当二维信号的对称性大于2阶时,我们可以用Kronecker积来研究cl_n矩阵的对称性,但对于大于三维的信号,我们必须用张量积来将酉矩阵嵌入到c4矩阵中。这个问题仍然悬而未决。我们将研究这些问题。少

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Relatioship Between Unitary Matrices Used in Signal Processing and Symmetry Groups
信号处理中使用的酉矩阵与对称群之间的关系
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Miyakosi;Tanaka A. Kawaguchi;F.M
  • 通讯作者:
    F.M
信号解析に用いられるユニタリ行列の固有解析
信号分析中使用的酉矩阵的特征分析
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yosuke Sato;Syutaro Inoeu;佐藤洋祐;宮腰政明・田中章・河口万由香
  • 通讯作者:
    宮腰政明・田中章・河口万由香
信号解析に用いられるユニタリー行列と対称群の関係
信号分析中使用的酉矩阵与对称群的关系
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    河口万由香;亘理修;宮腰政明;宮腰政明・田中章・河口万由香
  • 通讯作者:
    宮腰政明・田中章・河口万由香
信号解析に用いられるユニタリ行列と対称群の関係
信号分析中使用的酉矩阵与对称群的关系
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    河口万由香;亘理修;宮腰政明;宮腰政明・田中章・河口万由香;宮腰政明・田中章・河口万由香
  • 通讯作者:
    宮腰政明・田中章・河口万由香
A Relatioship Between of Unitary Matrices Used in Signal Processing with Finite Orders and Symmetry Groups
有限阶信号处理中的酉矩阵与对称群之间的关系
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Onodera;K.;. M.Miyakosi;Tanaka A. Kawaguchi;F.M
  • 通讯作者:
    F.M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAKOSHI Masaaki其他文献

MIYAKOSHI Masaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAKOSHI Masaaki', 18)}}的其他基金

Construction of Regularized Parametric Projection Filters
正则化参数投影滤波器的构造
  • 批准号:
    13680381
  • 财政年份:
    2001
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Framework construction and engineering development of polarimetric-interferometric synthetic aperture radar based on phasor-quaternion neural networks
基于相量四元数神经网络的偏振干涉合成孔径雷达框架构建及工程开发
  • 批准号:
    23H00487
  • 财政年份:
    2023
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
  • 批准号:
    2884658
  • 财政年份:
    2023
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Studentship
Time-frequency analysis of quaternion-valued functions.
四元数值函数的时频分析。
  • 批准号:
    20K03653
  • 财政年份:
    2020
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Dual Quaternion Based Method for Estimating PTV Margins in Intensity-Modulated Radiotherapy
基于双四元数的调强放射治疗 PTV 裕度估计方法
  • 批准号:
    10160838
  • 财政年份:
    2020
  • 资助金额:
    $ 2.16万
  • 项目类别:
Design of control systems using quaternion neural networks for dynamic systems
使用四元数神经网络动态系统的控制系统设计
  • 批准号:
    20K11980
  • 财政年份:
    2020
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of the engineering framework of phasor quaternion neural networks in adaptive electromagnetic-wave information processing
自适应电磁波信息处理相量四元数神经网络工程框架的构建
  • 批准号:
    18H04105
  • 财政年份:
    2018
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Harmonic Analysis on p-adic homogeneous spaces based on spherical functions
基于球函数的p进齐次空间调和分析
  • 批准号:
    16K05081
  • 财政年份:
    2016
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visualization of Quaternion Julia Set on Volumetric Display
四元数 Julia 集在体积显示上的可视化
  • 批准号:
    15K00286
  • 财政年份:
    2015
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quaternion neural networks to deal with polarization information in electromagnetic wave and lightwave
四元数神经网络处理电磁波和光波中的偏振信息
  • 批准号:
    15H02756
  • 财政年份:
    2015
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on quasi-Frobenius rings based on the Faith conjecture
基于Faith猜想的拟Frobenius环研究
  • 批准号:
    26400047
  • 财政年份:
    2014
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了