Fast implementation and security analysis of hyperelliptic curve cryptosystems
超椭圆曲线密码系统的快速实现与安全性分析
基本信息
- 批准号:17500010
- 负责人:
- 金额:$ 2.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. It is known that among the algebraic curve based cryptosystems, only hyperelliptic curves of gene ra less or equal to three are secure. In this research, we first developed fast algorithms for hyper elliptic curves of genus three. Cryptosystems based on these curves are implemented on cheap processors of 64 bits with single decision, thus more efficient cryptosystems than elliptic curve crypt osystems are possible. In particular, fast addition algorithms with the least computational cost are obtained. These algorithms are implemented to achieve a new record of fast scalar multiplication with173 microseconds.2. As to security analysis, we show for the first time the existence of a huge number of elliptic curves which are believed to be secure but can be broken by GHS attack. In particular, we show explicitly classes of elliptic and hyperelliptic curves of low genera defined over extension fields, which have weak coverings, i.e. their Well restrictions can be attacked by either index calculus attacks to hyperelliptic curves or Diem's recent attack to non-hyperelliptic curves. A complete classification of such weak curves is obtained. Besides, we show how to construct such coverings from these curves and analyze density of these weak curves.
1. 已知在基于代数曲线的密码体制中,只有基因ra小于等于3的超椭圆曲线是安全的。在本研究中,我们首次开发了三属超椭圆曲线的快速算法。基于这些曲线的密码系统可以在64位的廉价处理器上实现,因此可以实现比椭圆曲线密码系统更高效的密码系统。特别地,获得了计算量最小的快速加法算法。这些算法实现了在173微秒内实现快速标量乘法的新记录。在安全性分析方面,我们首次证明了存在大量的椭圆曲线,这些椭圆曲线被认为是安全的,但可以被GHS攻击破坏。特别地,我们明确地展示了在扩展域上定义的低属椭圆曲线和超椭圆曲线的类别,它们具有弱覆盖,即它们的Well限制既可以被超椭圆曲线的指数微积分攻击攻击,也可以被Diem最近对非超椭圆曲线的攻击攻击。得到了这类弱曲线的完整分类。此外,我们还展示了如何从这些曲线构造这样的覆盖,并分析了这些弱曲线的密度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
奇標数3次拡大体上の楕円曲線暗号に対するGHS攻撃の実装
具有奇特性的三次扩张域上椭圆曲线密码的GHS攻击实现
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:橋詰 直紀;百瀬 文之;趙 晋輝
- 通讯作者:趙 晋輝
A scale-space Reeb-graph of topological invariants of images and its applications to content identification
图像拓扑不变量的尺度空间Reeb图及其在内容识别中的应用
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Jinhui Chao;Shintaro Suzuki
- 通讯作者:Shintaro Suzuki
Skew-Frobenius Maps on Hyperelliptic Curves
- DOI:10.1093/ietfec/e91-a.7.1839
- 发表时间:2008-07
- 期刊:
- 影响因子:0
- 作者:Shun Kozaki;Kazuto Matsuo;Yasutomo Shimbara
- 通讯作者:Shun Kozaki;Kazuto Matsuo;Yasutomo Shimbara
Classification of (2, 2,.., 2) coverings obtained fromn Weil restriction of P1
从 P1 的 Weil 限制获得的 (2, 2,.., 2) 覆盖层的分类
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:F.Momose;C.Chao
- 通讯作者:C.Chao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHAO Jinhui其他文献
CHAO Jinhui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHAO Jinhui', 18)}}的其他基金
Exact mathematical modeling of human color perception and applications to color weak compensation and color information processsing
人类色彩感知的精确数学建模及其在色彩弱补偿和色彩信息处理中的应用
- 批准号:
23500156 - 财政年份:2011
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Security Analysis of Elliptic and Hyperelliptic Cryptosystems against Weil Descent Attack
椭圆和超椭圆密码系统抗Weil下降攻击的安全性分析研究
- 批准号:
20560370 - 财政年份:2008
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation, recognition and synthesis of 3D images using Lie algebra surace model
使用李代数曲面模型表示、识别和合成 3D 图像
- 批准号:
15560335 - 财政年份:2003
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON VOLTERRA NONLINEAR ADAPTIVE SYSTEMS AND FAST ADAPTICE ALGORITHMS
VOLTERRA非线性自适应系统及快速自适应算法研究
- 批准号:
12650395 - 财政年份:2000
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




