Representation, recognition and synthesis of 3D images using Lie algebra surace model
使用李代数曲面模型表示、识别和合成 3D 图像
基本信息
- 批准号:15560335
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, 3D images and 3D computer graphics are playing an important rule in virtual environment, multimedia communications and digital contents. Therefore, it is highly desirable to have powerful and efficient model for 3D free surfaces for efficient representation, coding, recognition and synthesis of 3D objects.This research presents a global method to represent surface models of 3D objects invariantly under Euclidean or Affine motions using their tangential and normal Lie algebras. The global shapes as Lie groups are completely described by purelylocal information in these Lie algebra. Particularly, we focus on linear Lie algebras and Hamiltonian Lie algebras, which can represent algebraic shapes and a much wider class of non-algebraic shapes as well. We obtain the complete sets of invariants under Euclidean motions which uniquely, determines and reproduces the objects.Algorithms are also proposed to extract these invariants easily and robustly from local data on the surfaces by solving a system of linear equations. These invariants can then be used in segmentation and recognition of the objects.We also propose a novel surface model called fibre-bundle model for free surfaces, which represents an arbitrary surface as a local product between a base curve and a fibre curve. In particular, this model using fibres as 1-parameter group of linear Lie algebra or Hamilton Lie algebra is very efficient in the sense that the surface can be represented by a base curve and six invariants or 15 parameters, in the linear Lie algebraic case. The surface can be synthesised fastly without numerical error.
近年来,三维图像和三维计算机图形学在虚拟环境、多媒体通信和数字内容等方面发挥着重要的作用。因此,为了有效地表示、编码、识别和合成三维物体,需要一个功能强大、高效的三维自由曲面模型.本文提出了一种利用切向和法向李代数表示三维物体在欧氏或仿射运动下不变的曲面模型的全局方法.作为李群的整体形状完全由这些李代数中的纯局部信息来描述。特别是,我们专注于线性李代数和哈密顿李代数,它可以表示代数形状和更广泛的一类非代数形状以及。我们得到了在欧氏运动下唯一确定和再现物体的不变量的完整集合,并提出了通过求解线性方程组从表面上的局部数据中简单而鲁棒地提取这些不变量的算法。这些不变量可以用于对象的分割和识别。我们还提出了一种新的自由表面模型,称为纤维束模型,它将任意表面表示为基本曲线和纤维曲线之间的局部积。特别地,该模型使用纤维作为线性李代数或汉密尔顿李代数的1-参数群是非常有效的,因为在线性李代数的情况下,表面可以由基曲线和6个不变量或15个参数表示。该曲面可快速合成,无数值误差。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Meshing Technology with Quality Assurance for Curved Surfaces Defined by Linear Lie Algebra
线性李代数定义曲面的质量保证网格划分技术
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Y.Sano;M.Makino;J.Chao
- 通讯作者:J.Chao
Analysis on error surface and fast algorithms of multichannel quadratic Volterra adaptive filters
- DOI:10.1109/mwscas.2004.1354380
- 发表时间:2004-07
- 期刊:
- 影响因子:0
- 作者:Jinhui Chao
- 通讯作者:Jinhui Chao
An Adaptive Mesh Generation of Surfaces Defined by Lie Algebra and its Visualization toward Intelligent Communication System
李代数定义的曲面自适应网格生成及其面向智能通信系统的可视化
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:N.Sagara;M.Makino;J.Chao
- 通讯作者:J.Chao
On surface model based on fibre bundle of 1-parameter groups of Linear Lie algebra
基于线性李代数一参数群纤维束的曲面模型
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Jinhui Chao;Jongdae Kim;Atsushi Nakakura
- 通讯作者:Atsushi Nakakura
On definitions and construction of uniform color space
均匀色彩空间的定义与构造
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:J.Chao;I.Osugi;M.Suzuki
- 通讯作者:M.Suzuki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHAO Jinhui其他文献
CHAO Jinhui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHAO Jinhui', 18)}}的其他基金
Exact mathematical modeling of human color perception and applications to color weak compensation and color information processsing
人类色彩感知的精确数学建模及其在色彩弱补偿和色彩信息处理中的应用
- 批准号:
23500156 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Security Analysis of Elliptic and Hyperelliptic Cryptosystems against Weil Descent Attack
椭圆和超椭圆密码系统抗Weil下降攻击的安全性分析研究
- 批准号:
20560370 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast implementation and security analysis of hyperelliptic curve cryptosystems
超椭圆曲线密码系统的快速实现与安全性分析
- 批准号:
17500010 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON VOLTERRA NONLINEAR ADAPTIVE SYSTEMS AND FAST ADAPTICE ALGORITHMS
VOLTERRA非线性自适应系统及快速自适应算法研究
- 批准号:
12650395 - 财政年份:2000
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Autonomous high-precision 3D modeling of standard bridge using optical measurement and dynamic response
使用光学测量和动态响应对标准桥梁进行自主高精度 3D 建模
- 批准号:
23K04008 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning-based 3D modeling of AMD to assess disease progression and response to treatment
基于学习的 AMD 3D 建模,用于评估疾病进展和治疗反应
- 批准号:
10592517 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
3D modeling of Jomon cord marker by the structure from motion and identification of the pottery produced at the same time
通过运动结构对绳文绳标记进行 3D 建模并同时识别陶器
- 批准号:
23K00946 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiscale hydrogel biomaterials-enabled 3D modeling of cancer drug resistance
基于多尺度水凝胶生物材料的癌症耐药性 3D 建模
- 批准号:
10639167 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Development of hybrid virtual medical OJT technology by combining mixed reality technology and medical 3D modeling technology
混合现实技术与医学3D建模技术相结合开发混合虚拟医疗OJT技术
- 批准号:
21H00894 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research for the design of 3D modeling structured catalysts with the application of machine learning
应用机器学习的3D建模结构化催化剂设计基础研究
- 批准号:
21K14456 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D Modeling, Animation and Perception guided Compression for Videoconferencing
用于视频会议的 3D 建模、动画和感知引导压缩
- 批准号:
548959-2019 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Alliance Grants
Towards a Software System for 3D Modeling of Urban Road Environments using Mobile Laser Scanning Data
开发使用移动激光扫描数据对城市道路环境进行 3D 建模的软件系统
- 批准号:
RGPIN-2016-04726 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Development of permeability control technology for soften and molden packed bed in blast furnace using 3D modeling
利用3D建模开发高炉软化成型填充床渗透率控制技术
- 批准号:
19K15331 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Minimal 3D Modeling Methodology
EAGER:最小 3D 建模方法
- 批准号:
2032770 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant














{{item.name}}会员




