The study of Kahler fibrations and its applications to Finsler geometry

卡勒纤维的研究及其在芬斯勒几何中的应用

基本信息

  • 批准号:
    17540086
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

In this research, we have studied the differential geometry of Kahler fibrations and its applications to complex Finsler geometry in the term 2005-2007. The main subjects of this project are (1) the study of Kahler fibration from the view point of complex analytic geometry, (2) the study of metric of Weil-Petersson type in Finsler geomrty, (3) the study of the relation of complex structure of the base maifold and the given complex Finsler metric.In this project, we have studied the theory of connections on the total space of the fibration, which is naturally related to the theory of Finsler connections. Let E be a holomorphic vector bundle over a compact Kahler manifold M. Then the total spaceP (E)of the projective bundle of E is also a compact Kahler manifold. The Kahler metric on P (E)determines a strongly pseudoconvex Finsler metric on E. Such a Finsler metric is naturally concerned with the ampleness of E. This property is characterized by the curvature of Chern-Fisnler connection.The main result in this project is the characterization of Finsler-Kahler manifold in terms of Chern-Finsler connection and the given complex structure on M. The head investigator reported some results in this project at the international conferences held at Budapest (Hungary, 2005),Sapporo (Japan, 2006), Sendai (Japan, 2007),Balatonfoldvar (Hungary, 2007 ),and he has published two paper on complex Finsler geometry. Furthermore a paper entitled " Dual connections in Finsler geometry" is in publishing. This paper is concerned with the notion of "dual connection" of Finsler connection which is obtained in this project.
在本研究中,我们研究了Kahler纤维的微分几何及其在复杂Finsler几何中的应用。本课题的主要课题是:(1)从复解析几何的角度研究Kahler纤维;(2)研究芬斯勒几何中Weil-Petersson型度规;(3)研究基基底的复结构与给定复芬斯勒度规的关系。在这个项目中,我们研究了纤维总空间的连接理论,这与Finsler连接理论自然相关。设E是紧化Kahler流形m上的全纯向量束,则E的射影束的总空间ep (E)也是紧化Kahler流形。P (E)上的Kahler度规决定了E上的强伪凸Finsler度规,这样的Finsler度规自然与E的丰度有关,这种性质的特征是chen - fisnler连接的曲率。该项目的主要成果是在chen -Finsler连接和m上给定的复杂结构方面对Finsler- kahler流形的表征。首席研究员在布达佩斯(匈牙利,2005),札幌(日本,2006),仙台(日本,2007),Balatonfoldvar(匈牙利,2007)举行的国际会议上报告了该项目的一些结果,并发表了两篇关于复杂Finsler几何的论文。此外,一篇题为“芬斯勒几何中的对偶连接”的论文即将发表。本文讨论了在该方案中得到的芬斯勒连接的“双重连接”概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Grafting hyperbolic metrics and Eisenstein series
嫁接双曲度量和爱森斯坦级数
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    砂田利一;橋本義武;ほか;S.Yokura;S. Yokura;S. Yokura;K.Obitsu;K. Miyajima;S. Tsuboi;S. Tsuboi;T.Nagano and T.Aikou;T.Aikou and L.Kozma;K.Obitsu and S.A.Wolpert
  • 通讯作者:
    K.Obitsu and S.A.Wolpert
Dual connections in Finder geometry
Finder 几何结构中的双连接
Analytic approach of deformation of normal isolated singularities
法向孤立奇点变形的解析方法
Deligne parings over Moduli spaces of punctured Riemann sufaces
穿孔黎曼曲面模空间上的德利涅配对
The asymptotic behavior of the Takhtajan-Zograf metric
Takhtajan-Zograf 度量的渐近行为
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AIKOU Tadashi其他文献

AIKOU Tadashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AIKOU Tadashi', 18)}}的其他基金

A global approach in real and complex Finsler geometry by averaging methods
通过平均方法研究真实和复杂芬斯勒几何的全局方法
  • 批准号:
    24540086
  • 财政年份:
    2012
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A global theory of Finsler geometry and its applications
芬斯勒几何的整体理论及其应用
  • 批准号:
    21540087
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of differential geometry of Kahler-fibrations and its applications.
卡勒纤维微分几何研究及其应用。
  • 批准号:
    15540084
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of Bott connection and its applications to Finsler geometry
Bott连接的研究及其在芬斯勒几何中的应用
  • 批准号:
    13640084
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of the semi-stability of Einstein-Finsler vector bundles
爱因斯坦-芬斯勒矢量丛的半稳定性研究
  • 批准号:
    10640083
  • 财政年份:
    1998
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了