Study on minimal free resolution of Stanley-Reisner rings
Stanley-Reisner环最小自由分辨率研究
基本信息
- 批准号:18540041
- 负责人:
- 金额:$ 2.57万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research is to study algebraic and combinatorial properties of minimal free resolution of Stanley-Reisner rings. We focused on the relation between the multiplicity and the Castelnuovo-Mumford regularity of Stanley-Reisner rings.Before the academic year 2005 we proved that the Castelnuovo-Mumford regularity of a Stanley-Reisner ideal is less than or equal to the dimension d of the Stanley-Reisner rings if its multiplicity is less than or equal to d. Moreover we verified that the Castelnuovo-Mumford regularity of a Stanley-Reisner ideal is less than or equal to d if its multiplicity is less than or equal to 2d-1, and if the degree of generators of the Stanley-Reisner ideal is less than or equal to dIn the academic year 2006, developing these results, we proved that the Castelnuovo-Mumford regularity of a Stanley-Reisner ideal is less than or equal to d if its multiplicity is less than or equal to 3d-2, and if the degree of generators of the first syzygy module of the Stanley-Reisner ideal is less than or equal to d+1. From this result we conjectured that the Castelnuovo-Mumford regularity of a Stanley-Reisner ideal is less than or equal to d if its multiplicity is less than or equal to (p+2)d- (p-1), and if the degree of generators of the p-th syzygy module of the Stanley-Reisner ideal is less than or equal to d+p. In the academic year 2007 we proved that the above conjecture holds if the dimension of the Stanley-Reisner rings is 2 or 3. We also found that this conjecture is a generalization of the lower bound theorem, that is famous in convex polytope theory, in the facet case.
本文研究了Stanley-Reisner环的极小自由分解的代数和组合性质。我们主要研究了Stanley-Reisner环的重数与Castelnuovo-Mumford正则性之间的关系,在2005学年之前我们证明了当Stanley-Reisner环的重数小于或等于d时,其Castelnuovo-Mumford正则性小于或等于维数d.进一步证明了Stanley-Reisner理想的Castelnuovo-Mumford正则性当其重数小于或等于2d-1时小于或等于d,当Stanley-Reisner理想的生成元次数小于或等于d时。证明了Stanley-Reisner理想的Castelnuovo-Mumford正则性小于等于d,如果它的重数小于等于3d-2,且Stanley-Reisner理想的第一合合模的生成元的次数小于或等于d+1.由这个结果我们证明了Stanley-Reisner理想的Castelnuovo-Mumford正则性小于或等于d,如果它的重数小于或等于(p+2)d-(p-1),如果Stanley-Reisner理想的p次合合模的生成元的次数小于或等于d+在2007学年,我们证明了上述猜想成立,如果Stanley-Reisner环的维数是2或3。我们还发现这个猜想是凸多面体理论中著名的下界定理在小平面情形下的推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Squarefree monomial idealの算術階数の上限
Squarefree单项式理想算术阶数上限
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Naoki;Terai;Ken-ichi;Yoshida;寺井 直樹;寺井 直樹
- 通讯作者:寺井 直樹
Arithmetical rank of Stanley-Reisner ideals with 2-linear resolution
具有 2 线性分辨率的 Stanley-Reisner 理想的算术等级
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Kyohko;Kimura;Naoki;Terai;Ken-ichi;Yoshida;寺井 直樹
- 通讯作者:寺井 直樹
Lower bound theorem and regularity of monomial ideals
单项式理想的下界定理和正则性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:T.;Nakahara;S. I. A.;Shah;Naoki Terai
- 通讯作者:Naoki Terai
Stanley Reisner ideals which are complete intersections locally
Stanley Reisner 的理想是局部完整的交叉点
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:寺井直樹;吉田健一
- 通讯作者:吉田健一
Alexander duality in Stanley-Reisner rings
斯坦利-赖斯纳环中的亚历山大对偶性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Shin-ichi Katayama;Y. Kishi;N. Terai
- 通讯作者:N. Terai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERAI Naoki其他文献
TERAI Naoki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERAI Naoki', 18)}}的其他基金
Minimal free resolutions and the arithmetical rank of Stanley-Reisner ideals
斯坦利-赖斯纳理想的最小自由分辨率和算术等级
- 批准号:
23540053 - 财政年份:2011
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the multiplicities and minimal free resolutions of Stanley-Reisner rings
Stanley-Reisner环的多重性和最小自由分辨率研究
- 批准号:
20540047 - 财政年份:2008
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on minimal free resolution of Stanley-Reisner rings
Stanley-Reisner环最小自由分辨率研究
- 批准号:
16540028 - 财政年份:2004
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Study on minimal free resolution of Stanley-Reisner rings
Stanley-Reisner环最小自由分辨率研究
- 批准号:
16540028 - 财政年份:2004
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




