Development of nano-scale observation system for adhesion and uptake of potholes on/into living cells

开发纳米级观察系统,用于活细胞上/内凹坑的粘附和吸收

基本信息

  • 批准号:
    18360394
  • 负责人:
  • 金额:
    $ 10.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

We developed an integrated nano-scale observation system of an Atomic Force Microscope and a Confocal Laser Scanning Microscope (CLSM) with the functionalized colloid AFM probes. This system has been used to obtain the following information: (1) adhesion forces between engineered materials and living cells; (2) optimal size and surface property of particles for cellular uptake; (3) processes of cellular uptake and discharge; (4) movement of the target cells and their neighboring cells. Our purpose is to obtain the quantitative fundamental data for efficient design for DOS particles using our developed system and to understand the mechanisms of adhesion, uptake, and cytotoxicity of particles for living cells.First, we carried out AFM measurement of the adhesion forces between mouse skin cancer cells (B16F10) and particles with different surface properties of charge density, hydorophilicity/hydrophobicity, and functional group. Second, we performed CLSM observation of the living cells after exposure to culture media including fluorescent nanoparticles with various surface functionalities and sizes. Also, we assessed the cytotoxicity of the fluorescent nanoparticles using the trypan blue dye method.It was found that the surface functionality of nanoparticles affects the uptake region of cells (the outer surface of cell membrane or the cytoplasm) to determine the cytotoxicity. These uptake region and cytotoxicity were affected by the culture conditions such as temperature and serum addition. There were no clear relationship between the uptake amount and the adhesion forces, indicating that the cellular uptake of particles is not satisfactorily explained by the adhesion forces and additional factor(s) should be therefore took into account.In the future study, we should carry out the experiments focusing on the receptors residing in/on cell membrane (i.e., the membrane proteins)▲to understand the detailed mechanisms of cellular uptake of particles.
我们开发了一个集成的原子力显微镜和共聚焦激光扫描显微镜(CLSM)与功能化胶体AFM探针的纳米尺度观察系统。该系统已被用于获得以下信息:(1)工程材料和活细胞之间的粘附力;(2)细胞摄取的颗粒的最佳尺寸和表面性质;(3)细胞摄取和放电的过程;(4)靶细胞及其邻近细胞的运动。首先,利用原子力显微镜(AFM)测量了小鼠皮肤癌细胞(B16 F10)与具有不同表面性质(电荷密度、亲水/疏水性和官能团)的DOS颗粒之间的粘附力。其次,我们进行CLSM观察暴露于包括具有各种表面功能和尺寸的荧光纳米颗粒的培养基后的活细胞。同时,我们还利用台盼蓝染色法对纳米颗粒的细胞毒性进行了评价,发现纳米颗粒的表面功能性影响了细胞的摄取区域(细胞膜外表面或细胞质),从而决定了纳米颗粒的细胞毒性。这些摄取区域和细胞毒性受培养条件如温度和血清添加的影响。细胞摄取量与粘附力之间没有明确的关系,表明粘附力不能很好地解释细胞对颗粒的摄取,因此应考虑其他因素。膜蛋白)▲以了解细胞摄取颗粒的详细机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of the cell type and cell density on the binding of living cells to a silica particle: An atomic force microscope study
  • DOI:
    10.1016/j.colsurfb.2006.09.020
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Pyo, Nayoung;Tanaka, Saaya;Higashitani, Ko
  • 通讯作者:
    Higashitani, Ko
Adhesion forces, uptake amount, and cytotoxicity of engineered particles for living cells (in Japanese)
工程颗粒对活细胞的粘附力、摄取量和细胞毒性(日语)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.;Shinto
  • 通讯作者:
    Shinto
Penetration of living cell membranes with fortified carbon nanotube tips.
生細胞に対する微粒子の付着力、摂取量、細胞毒性の評価-原子間力顕微鏡と共焦点レーザー顕微鏡を主に用いて-
评估微粒对活细胞的粘附、摄取和细胞毒性 - 主要使用原子力显微镜和共焦激光显微镜 -
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Shioya;H. Shimizuら8名;新戸浩幸
  • 通讯作者:
    新戸浩幸
AFM measurement of adhesion forces between melanoma cells and particles (in Japanese)
AFM 测量黑色素瘤细胞和颗粒之间的粘附力(日语)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.;Shinto;Y.;Aso;K.;Higashitani
  • 通讯作者:
    Higashitani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIGAHITANI Ko其他文献

HIGAHITANI Ko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Assessing image quality improvement of a new Scanning Probe Microscopy imaging mode.
评估新扫描探针显微镜成像模式的图像质量改进。
  • 批准号:
    10039804
  • 财政年份:
    2023
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Collaborative R&D
PFI-TT: Active Acoustic Noise Cancellation and Control for Scanning Probe Microscopy
PFI-TT:扫描探针显微镜的主动声学噪声消除和控制
  • 批准号:
    2234449
  • 财政年份:
    2023
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Standard Grant
Probing molecular interactions on soft surfaces by scanning probe microscopy
通过扫描探针显微镜探测软表面上的分子相互作用
  • 批准号:
    RGPIN-2020-05700
  • 财政年份:
    2022
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
Scanning Probe Microscopy of Polymer, Biopolymer and Semicrystalline Surface Nanostructures
聚合物、生物聚合物和半晶表面纳米结构的扫描探针显微镜
  • 批准号:
    RGPIN-2022-04790
  • 财政年份:
    2022
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Study of Electronic and Magnetic Topological Phenomena in Two Dimensional Quantum Materials with Scanning Probe Microscopy
职业:利用扫描探针显微镜研究二维量子材料中的电子和磁拓扑现象
  • 批准号:
    2145735
  • 财政年份:
    2022
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Continuing Grant
Scanning Probe Microscopy development and applications for time resolved structure-function studies
扫描探针显微镜的开发和时间分辨结构功能研究的应用
  • 批准号:
    RGPIN-2021-02666
  • 财政年份:
    2022
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
Novel scanning probe microscopy methods to reveal solid-liquid-gas three-phase contact lines
新型扫描探针显微镜方法揭示固-液-气三相接触线
  • 批准号:
    22K18772
  • 财政年份:
    2022
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Scanning Probe Microscopy Using Precise Force Detection
使用精确力检测的扫描探针显微镜的开发
  • 批准号:
    21K18162
  • 财政年份:
    2021
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Scanning Probe Microscopy development and applications for time resolved structure-function studies
扫描探针显微镜的开发和时间分辨结构功能研究的应用
  • 批准号:
    RGPIN-2021-02666
  • 财政年份:
    2021
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Discovery Grants Program - Individual
Spatially resolved spectroscopy of Quantum Materials: Scanning probe Microscopy control system for high-resolution tunnelling spectroscopy
量子材料的空间分辨光谱:用于高分辨率隧道光谱的扫描探针显微镜控制系统
  • 批准号:
    RTI-2022-00171
  • 财政年份:
    2021
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Research Tools and Instruments
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了