Efficiency Analysis of Arithmetic for Public-Key Cryptosystems and its Applications

公钥密码算法的效率分析及其应用

基本信息

  • 批准号:
    18500015
  • 负责人:
  • 金额:
    $ 2.53万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

We have investigated the following research topics.(1) For a countermeasure against side channel attacks on Koblitz curve cryptosystem, we proposed a tau expansion with a fixed pattern for a give element in an imaginary quadratic filed.(2) A secret bit of a scalar multiplication in PKC corresponds to either a multiplication or a squaring. We experimented that a multiplication with two same input has a different power consumption.(3) XTR is one of the most efficient public-key cryptosystems. We presented an algorithm that computes an exponentiation with a fixed pattern secure against side channel attacks.(4) RSA-CRT is an efficient method to enhance the speed of RSA cryptosystem. We gave a survey of RSA-CRT and some countermeasures against side channel attacks.(5) The final exponentiation of pairing on supersingular elliptic curve over finite field with characteristic three was improved by 50% using the torus over GF (3^m).E(6) CDSA requires a multi-scalar multiplication in the verification step. In this research we presented a minimal joint Hamming weight class for a window method using Shamir's trick.(7) We proposed a variant of XTR over GF (3^6m) whose ciphertexts can be compressed by 1/6. We also presented an efficient implementation using the optimal normal basis (ONB).(8) We have presented an efficient representation of scalar by the Frobenius map of Koblitz curve, which is able to reduce the number of pre-computed table only to two in TNAF5.(9) We proposed an efficient implementation of EtaT pairing using the random coordinate secure against side channel attacks.(10) We published a proceedings of the first conference on pairing-based cryptography "Pairing 2007", which deals basic mathematics, cryptographic protocols, implementation, and applied security, related to pairing.
我们研究了以下研究课题。(1)针对Koblitz曲线密码体制的边信道攻击,提出了一种对虚二次域中给定元素进行固定模式的τ展开。(2)PKC中标量乘法的秘密位对应于乘法或平方。我们实验了两个相同输入的乘法具有不同的功耗。(3)XTR是最有效的公钥密码体制之一。我们提出了一个算法,计算一个指数与固定的模式安全的侧信道攻击。(4)RSA-CRT是提高RSA密码系统速度的一种有效方法。本文介绍了RSA CRT的基本原理,并提出了一些针对边信道攻击的对策。(5)利用GF(3^m)上的环面,将特征为3的有限域上超奇异椭圆曲线上配对的最终指数运算提高了50%.E(6)CDSA在验证步骤中需要多标量乘法.在这项研究中,我们提出了一个最小的联合汉明重量类的窗口方法使用Shamir的技巧。(7)我们提出了GF(3^6m)上XTR的一个变形,其密文可以压缩1/6。我们还提出了一个有效的实现,使用最佳正常基(ONB)。(8)我们提出了一种有效的标量表示的Frobenius映射的Koblitz曲线,这是能够减少预计算表的数量只有两个在TNAF 5。(9)我们提出了一个有效的实现EtaT配对使用随机坐标安全的侧信道攻击。(10)我们发表了第一次基于配对的密码学会议“配对2007”的会议记录,其中涉及与配对相关的基础数学,密码协议,实现和应用安全。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compressed XTR
压缩XTR
Defeating Simple Power Analysis Koblitz Curves
击败简单的功率分析 Koblitz 曲线
Side Channel Attacks and Countermeasures on Pairing Based Cryptosystems over Binary Fields
二进制域上基于配对的密码系统的侧信道攻击及对策
A New Upper Bound for the Minimal Density of Joint Representations in Elliptic Curve Cryptosystems
椭圆曲线密码系统联合表示最小密度的新上界
Further Security Analysis of XTR
  • DOI:
    10.1007/11689522_4
  • 发表时间:
    2006-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dong‐Guk Han;T. Takagi;Jongin Lim
  • 通讯作者:
    Dong‐Guk Han;T. Takagi;Jongin Lim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAGI Tsuyoshi其他文献

Revisiting the Orthogonal Lattice Algorithm in Solving General Approximate Common Divisor Problem
重温正交格算法解决一般近似公约数问题

TAKAGI Tsuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAGI Tsuyoshi', 18)}}的其他基金

Analysis of positive selection process during T eell development via large transcription factor
通过大转录因子分析细胞发育过程中的正选择过程
  • 批准号:
    22590443
  • 财政年份:
    2010
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Security Analysis of Public-Key Cryptography by Large-Scale Experiments
通过大规模实验进行公钥密码学的安全性分析
  • 批准号:
    22650014
  • 财政年份:
    2010
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Mathematical Foundation and Implantation Methods for Pairing-Based Cryptography
基于配对的密码学的数学基础和植入方法
  • 批准号:
    22300026
  • 财政年份:
    2010
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Social Foundations of Cryptography
密码学的社会基础
  • 批准号:
    EP/X017524/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Research Grant
CAREER: Rank Metric Codes from Drinfeld Modules and New Primitives in Code Based Cryptography
职业:对来自 Drinfeld 模块的度量代码和基于代码的密码学中的新原语进行排名
  • 批准号:
    2338424
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for Real World Cryptography 2024 (RWC'24)
旅行:2024 年现实世界密码学 NSF 学生旅行补助金 (RWC24)
  • 批准号:
    2410618
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Standard Grant
Secure Cloud Computing from Cryptography:The Rise of Pragmatic Cryptography
从密码学中保护云计算:实用密码学的兴起
  • 批准号:
    FL230100033
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Australian Laureate Fellowships
Implementation Security of Quantum Cryptography
量子密码学的实现安全
  • 批准号:
    2907696
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Studentship
Social foundations of cryptography
密码学的社会基础
  • 批准号:
    EP/X016226/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Research Grant
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
  • 批准号:
    2401580
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Continuing Grant
Social Foundations of Cryptography
密码学的社会基础
  • 批准号:
    EP/X016080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Research Grant
APPQC: Advanced Practical Post-Quantum Cryptography From Lattices
APPQC:来自格的高级实用后量子密码学
  • 批准号:
    EP/Y02432X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Research Grant
QRYPTON - Quantum secuRe crYptograPhy to secure IoT devices in deep submicrOn Nodes
QRYPTON - 量子安全密码学,可保护深亚微米节点中的物联网设备
  • 批准号:
    10093112
  • 财政年份:
    2024
  • 资助金额:
    $ 2.53万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了