Security Enhancement and Power Reduction of Networks based on Machine learning Approach with VLSI Technology

基于机器学习方法和 VLSI 技术的网络安全增强和功耗降低

基本信息

  • 批准号:
    18500048
  • 负责人:
  • 金额:
    $ 2.38万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

I conducted research from various aspects to show that machine learning approaches combined with VLSI technology are effective for security enhancement, performance improvement, and power reduction of networks and their components. Research achievements are summarized as follows:1. Security enhancement of networks utilizing VLSI technologyI proposed an architecture for a fast and accurate signature-based intrusion detection system (IDS) where hardware is used at upstream steps requiring high speed, and software is used at downstream steps requiring high accuracy. I verified the effect by a simulation experiment.2. Power reduction and resource savings of networksI proposed a new method for decreasing the power consumption of wireless networks by predicting the probability of packet collisions. I proposed a congestion control scheme which reduces the congestion of Internet links by machine learning approach to save the network resource and improve the fairness among data flows.3. Improving the performance of processor based on machine learning approachesI improved the performance of CPU as an component of networks using a low-cost and highly accurate branch prediction scheme based on a machine learning approach.4. Enhancing the security of components using VLSI technologyI proposed a countermeasure against differential power analysis attacks to cryptosystems. The countermeasure is suitable for implementation on VLSI. I verified its effectiveness by experiments5. Improvements of security, performance, quality, and power consumption of multimedia network communicationsI proposed an architecture of two dimensional discrete wavelet transform (2D-DWT) to improve the performance and power savings, and utilized the architecture for image data authentication and tamper proofing. I improved the 2D-DWT algorithm to improve the performance and quality of tiling and restoring processes for image data.
我从多个方面进行了研究,证明了机器学习方法与VLSI技术相结合对增强网络及其组件的安全性、提高性能和降低功耗是有效的。1.基于VLSI技术的网络安全增强我提出了一种快速、准确的基于签名的入侵检测系统的体系结构,其中上游步骤使用硬件,下游步骤使用软件,要求高精度。通过仿真实验验证了该方法的有效性。提出了一种通过预测分组冲突概率来降低无线网络功耗的新方法。提出了一种拥塞控制方案,通过机器学习的方法减少了互联网链路的拥塞,节约了网络资源,提高了数据流之间的公平性。基于机器学习方法的处理器性能改进I采用了一种基于机器学习方法的低成本、高精度的分支预测方案,提高了作为网络组件的CPU的性能。利用VLSI技术提高组件的安全性我提出了一种针对密码系统的差分功耗分析攻击的对策。该对策适合在VLSI上实现。我通过实验验证了它的有效性。提高多媒体网络通信的安全性、性能、质量和功耗我提出了一种二维离散小波变换(2D-DWT)结构来提高性能和节能,并将该结构用于图像数据认证和防篡改。我改进了2D-DWT算法,提高了图像数据平铺和恢复过程的性能和质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algorithm level evaluation of cryptosystem resistance to second-order DPA
  • DOI:
  • 发表时间:
    2007-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akihiko Sasaki;K. Abe
  • 通讯作者:
    Akihiko Sasaki;K. Abe
Packet Inter-Arrival Time Estimation Using Neural Network Models
使用神经网络模型估计数据包到达间隔时间
乱数発生器及び乱数発生器の作成方法
随机数生成器以及如何创建随机数生成器
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
パーセプトロン分岐予測器への冗長入力付加の効果とその最適化
感知器分支预测器添加冗余输入的效果及其优化
Mathematical Analysis of JPEG 2000 Wavelet Filter Tiling Approaches and Its Experimental Verification
JPEG 2000小波滤波器平铺方法的数学分析及实验验证
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ABE Koki其他文献

STUDY ON THE EFFECT OF GRAVEL NOURISHMENT ON BEACH RECOVERY AT NAMI-ITA COAST
砾石营养对纳米伊塔海岸海滩恢复影响的研究
Fabrication of Lithium Lanthanum Zirconate Ceramics by Cold Sintering Process
冷烧结工艺制备锆酸锂锂陶瓷
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KOJIMA Yuichi;TAJIMA Yoshimitsu;TERASAWA Tomohiko;KATO Hiroyuki;ABE Koki;Y. Kumazawa
  • 通讯作者:
    Y. Kumazawa

ABE Koki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ABE Koki', 18)}}的其他基金

A New Approach to the Relation between Swimbladder Shape and Pressure
鳔形状与压力关系的新方法
  • 批准号:
    19780157
  • 财政年份:
    2007
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Evaluation of Asynchronous Hardware in terms of Resistivity against Cryptographic Attacks and Optimum Implementation of IPSecurity
异步硬件抗密码攻击能力评估及IPSecurity优化实现
  • 批准号:
    16500026
  • 财政年份:
    2004
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

军民两用即兴网(Ad Hoc Networks)的研究
  • 批准号:
    60372093
  • 批准年份:
    2003
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
  • 批准号:
    2406256
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Continuing Grant
Cooperativity Driven Communication through Noncovalent Networks in Biomimetic Systems
仿生系统中通过非共价网络的协作驱动通信
  • 批准号:
    2404149
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
Place-Based, Human-Centered Networks to Enhance Community Resilience and Equity
以地方为基础、以人为本的网络,以增强社区的弹性和公平性
  • 批准号:
    2242719
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Standard Grant
The International Political Thought of Women’s Regional Networks
妇女区域网络的国际政治思想
  • 批准号:
    DE240101244
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    Discovery Early Career Researcher Award
Deep Adder Networks on Edge Devices
边缘设备上的深加法器网络
  • 批准号:
    FT230100549
  • 财政年份:
    2024
  • 资助金额:
    $ 2.38万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了