Asymptotic expansions of the estimators in covariance structures with some robustness issues on normal-theory asymptotic cumulants under nonnormality
协方差结构中估计量的渐近展开,以及非正态下正态理论渐近累积量的一些鲁棒性问题
基本信息
- 批准号:18500210
- 负责人:
- 金额:$ 1.45万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Methods of asymptotic expansionEdgeworth expansion and its variations have been employed as basic tools. Since data in practice are more or less nonnormally distributed, arbitrary distributions including the normal one as a special case are assumed for observable variables.(2) Asymptotic expansions for the sample correlation coefficientAsymptotic expansions for the sample correlation coefficient and the sample multiple correlation coefficient are obtained up to order 1/n under nonnormality using the Edgeworth expansion and related methods. Asymptotic robustness of the normal-theory lower-order asymptotic cumulants are also investigated.(3) Asymptotic expansions in factor analysisAsymptotic expansions of the non-Studentized estimators and the Studentized ones in factor analysis are given. For Studentization, the sample cumulants up to the fourth order are required and expected to be unstable in finite samples. Considering this property, the Studentized estimators are given under normality and under nonnormality.(4) Asymptotic expansion for the sample coefficient alphaThe sample coefficient alpha is used as an index of reliability in the behavioral sciences. Reliability indexes are defined for correlation matrices as well as covariance matrices. The expansions of the distributions of the estimators have been derived using the Edgeworth expansion.
(1)渐近扩展方法edgeworth展开及其变体作为基本工具。由于实际数据或多或少是非正态分布,对于可观测变量,假设任意分布,包括作为特殊情况的正态分布。(2)样本相关系数的渐近展开式利用Edgeworth展开式及相关方法,在非正态性下得到了样本相关系数和样本多重相关系数的渐近展开式,展开式可达1/n阶。研究了正态理论低阶渐近累积量的渐近鲁棒性。(3)因子分析中的渐近展开式给出了因子分析中非学生化估计量和学生化估计量的渐近展开式。对于学生化,样本累积量高达四阶是必需的,并且预计在有限样本中是不稳定的。考虑到这一性质,给出了正态和非正态下的学生化估计量。(4)样本系数alpha的渐近展开式样本系数alpha在行为科学中被用作可靠性指标。定义了相关矩阵和协方差矩阵的信度指标。利用Edgeworth展开式导出了估计量分布的展开式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTION OF THE ESTIMATOR FOR THE GENERALIZED PARTIAL CORRELATION UNDER NONNORMALITY
- DOI:10.2333/bhmk.35.15
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:H. Ogasawara
- 通讯作者:H. Ogasawara
Asymptotic expansions for rotated solutions in factor analysis. (in Japanese)
因子分析中旋转解的渐近展开。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Ogasawara;H.
- 通讯作者:H.
Asymptotic expansions of the distributions of the least squares estimators in factor analysis and structural equation modeling.
因子分析和结构方程建模中最小二乘估计量分布的渐近展开。
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Ogasawara;H.
- 通讯作者:H.
Inverse transformation of Hall's method back to Edgeworth type expansions: An expository note.
霍尔方法逆向变换回埃奇沃斯型展开:注释。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Ogasawara;H.
- 通讯作者:H.
Two-term Edgeworth expansion of the distributions of the maximum likelihood estimators in factor analysis under nonnormality. In A. Rizzi & M. Vichi (Eds.), Proceedings in Computational Statistics on CD, 17th symposium held in Rome, Italy, 2006 (pp. 1681-
非正态性下因子分析中最大似然估计量分布的两项埃奇沃斯展开,见 A. Rizzi & M. Vichi (Eds.),CD 计算统计论文集,2006 年在意大利罗马举行的第 17 届研讨会(第 17 届)。 .1681-
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Ogasawara;H.
- 通讯作者:H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OGASAWARA Haruhiko其他文献
OGASAWARA Haruhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OGASAWARA Haruhiko', 18)}}的其他基金
Applications of asymptotic theory to data analysis in behaviormetrics with discrete and continuous variables
渐近理论在离散和连续变量行为计量数据分析中的应用
- 批准号:
23500341 - 财政年份:2011
- 资助金额:
$ 1.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of asymptotic theory to statistics such as covariances used in behaviormetrics
渐近理论在统计中的应用,例如行为度量中使用的协方差
- 批准号:
20500249 - 财政年份:2008
- 资助金额:
$ 1.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of asymptotic theory to factor analysis and structural equation modeling
渐近理论在因子分析和结构方程建模中的应用
- 批准号:
16500167 - 财政年份:2004
- 资助金额:
$ 1.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on test equating usingitem response theory and development of its software
利用项目反应理论进行测试等同化的研究及其软件开发
- 批准号:
14580343 - 财政年份:2002
- 资助金额:
$ 1.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the stability evaluation system for the rotated solutions in factor analysis and principal component analysis
因子分析和主成分分析中旋转解稳定性评价系统的开发
- 批准号:
11610097 - 财政年份:1999
- 资助金额:
$ 1.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




