Applications of asymptotic theory to factor analysis and structural equation modeling

渐近理论在因子分析和结构方程建模中的应用

基本信息

  • 批准号:
    16500167
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

(1)Derivation of the asymptotic bias in factor analysis (FA)In factor analysis, the estimators of factor loadings are of primary interest. So, the asymptotic biases of the estimators of factor loadings are derived under nonnormality, where the loadings are possibly orthogonally rotated.(2)Derivation of the asymptotic bias in principal component analysis (PCA)In principal component analysis, the asymptotic biases of the orthogonally or obliquely rotated component loading estimators are derived under nonnormality.(3)Asymptotic expansion of the parameter estimatorsEdgeworth expansions of the parameter estimators in covariance structures are given under nonnormality. To have the confidence intervals of the parameters, the Cornish-Fisher expansions of the Studentized estimators are derived.(4)Higher-order asymptotic standard errorHigher-order asymptotic standard errors of the parameter estimators are provided using an extended formula in implicit functions in structural equation modeling.(5)Derivation of the asymptotic robustness of the asymptotic biases in structural equation modelingThe asymptotic robustness of the normal-theory asymptotic biases of the parameter estimators in structural models are derived under some conditions against the violation of the assumption of normality.
(1)因子分析(FA)中渐近偏差的推导在因子分析中,因子载荷的估计量是一个重要的问题。因此,在非正态条件下,当载荷可能正交旋转时,得到了因子载荷估计的渐近偏差。(2)主成分分析(PCA)中渐近偏差的推导在主成分分析中,在非正态分布下,推导了正交或斜旋转分量载荷估计量的渐近偏差。(3)参数估计的渐近展开在非正态条件下,给出了协方差结构中参数估计的Edgeworth展开式。为了得到参数的置信区间,导出了学生化估计量的Cornish-Fisher展开式。(4)高阶渐近标准误差在结构方程模型中,利用隐函数形式的推广公式,给出了参数估计量的高阶渐近标准误差。(5)结构方程模型中渐近偏差的渐近稳健性的推导在一定条件下,证明了结构模型中参数估计量的正态理论渐近偏差的渐近稳健性。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic robustness of the asymptotic biases in structural equation modeling.
结构方程建模中渐近偏差的渐近鲁棒性。
Asymptotic biases in exploratory factor analysis and structural equation modeling.
探索性因素分析和结构方程建模中的渐近偏差。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ogasawara;H.
  • 通讯作者:
    H.
Asymptotic biases of least squares estimators in structural equation modeling.
结构方程建模中最小二乘估计量的渐近偏差。
Bias reduction of estimated standard errors in factor analysis.
因子分析中估计标准误差的偏差减少。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ogasawara;H.
  • 通讯作者:
    H.
Asymptotic biases of least squares estimators in structural equation modeling. Advances in psychology research : Vol. 27, pp.65-94.
结构方程建模中最小二乘估计量的渐近偏差。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shohov;S.P.(Ed.);Ogasawara;H.
  • 通讯作者:
    H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OGASAWARA Haruhiko其他文献

OGASAWARA Haruhiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OGASAWARA Haruhiko', 18)}}的其他基金

Applications of asymptotic theory to data analysis in behaviormetrics with discrete and continuous variables
渐近理论在离散和连续变量行为计量数据分析中的应用
  • 批准号:
    23500341
  • 财政年份:
    2011
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of asymptotic theory to statistics such as covariances used in behaviormetrics
渐近理论在统计中的应用,例如行为度量中使用的协方差
  • 批准号:
    20500249
  • 财政年份:
    2008
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic expansions of the estimators in covariance structures with some robustness issues on normal-theory asymptotic cumulants under nonnormality
协方差结构中估计量的渐近展开,以及非正态下正态理论渐近累积量的一些鲁棒性问题
  • 批准号:
    18500210
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on test equating usingitem response theory and development of its software
利用项目反应理论进行测试等同化的研究及其软件开发
  • 批准号:
    14580343
  • 财政年份:
    2002
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the stability evaluation system for the rotated solutions in factor analysis and principal component analysis
因子分析和主成分分析中旋转解稳定性评价系统的开发
  • 批准号:
    11610097
  • 财政年份:
    1999
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152661
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152704
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
  • 批准号:
    2152687
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
  • 批准号:
    535113-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Establishment of molecular design guidelines for enzyme mutants by principal component analysis aiming at improving enzyme electrochemical reaction
通过主成分分析建立酶突变体分子设计指南,旨在改善酶电化学反应
  • 批准号:
    21K14782
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
  • 批准号:
    535113-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of Orthonormal principal component analysis for categorical data and its applications
分类数据正交主成分分析的发展及其应用
  • 批准号:
    20K03303
  • 财政年份:
    2020
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
  • 批准号:
    535113-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Kernel principal component analysis in high dimension, low sample size and its applications
高维、小样本核主成分分析及其应用
  • 批准号:
    19J10175
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了