Study on the instability of Benjamin-Feir type concerned with nonlinear strongly dispersive systems

非线性强色散系统Benjamin-Feir型不稳定性研究

基本信息

  • 批准号:
    19540232
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2009
  • 项目状态:
    已结题

项目摘要

The first order approximate solution of Fourier type is constructed for the Sine-Gordon equation, which is the typical example of strongly dispersive nonlinear system, and its instability of Benjamine-Feir type is clarified by Floquet theory. Furthermore, to clarify the instability phenomena of general strongly dispersive nonlinear system, to begin with, various methods of constructing first integrals have been developed for weakly dispersive nonlinear system such as nonlinear equations of KdV type. Moreover, the relations between the higher order stationary KdV equation and the trace formulas have been clarified, and it is uniformly proved that the rapidly decreasing Bargmann potentials and the periodic finite zonal potentials solve the higher order stationary KdV equations. Simultaneously, to find the dispersive property for the given microscopic system, a numerical method called Baby-Bathwater scheme is studied. On the one hand, mechanism of critical phenomena has been clarified for complex network system by numerical methods.
针对强色散非线性系统的典型例子--Sine-Gordon方程,构造了该方程的一阶傅立叶近似解,并用Floquet理论阐明了该方程的Benjamin-Feir型不稳定性。此外,为了阐明一般强色散非线性系统的不稳定性现象,首先,针对弱色散非线性系统,如KdV型非线性方程,发展了各种构造第一积分的方法。阐明了高阶定常KdV方程与迹公式之间的关系,并一致证明了快速递减的Bargmann势和周期有限的带状势求解高阶定常KdV方程。同时,为了找出给定微观系统的色散性质,研究了一种称为Baby-Baby-Ball-water格式的数值方法。一方面,用数值方法阐明了复杂网络系统临界现象的机理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the first integrals 0f KdV equation and trace formulas of Deift-Trubowitz type
关于Deift-Trubowitz型一阶积分0f KdV方程和迹公式
非線形波動の古典解析
非线性波的经典分析
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大宮眞弓;長瀬昭子;M.Ohmiya;大宮眞弓
  • 通讯作者:
    大宮眞弓
Appellの補題とKdV保存則再訪
重新审视阿佩尔引理和 KdV 守恒定律
Baby-Bathwater scheme-a bridge between macroscopic and microscopic description-
Baby-Bathwater方案-宏观与微观描述之间的桥梁-
Networked Ising-Sznajd Models and the Stock Markets
网络化 Ising-Sznajd 模型和股票市场
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Nagao;M. Ohmiya;H. Yoshikawa
  • 通讯作者:
    H. Yoshikawa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHMIYA Mayumi其他文献

OHMIYA Mayumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHMIYA Mayumi', 18)}}的其他基金

An algebro-analytic study on the trace formulas associated with the linear ordinary differential operators and the nonlinear integrable systems
线性常微分算子和非线性可积系统的迹公式的代数分析研究
  • 批准号:
    23540255
  • 财政年份:
    2011
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the integrable systems in mathematical physics and applied analysis
数学物理可积系统研究及应用分析
  • 批准号:
    15540219
  • 财政年份:
    2003
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the spectrum and the monodromy related to the algebro-geometric potentials
与代数几何势相关的谱和单峰性研究
  • 批准号:
    13640195
  • 财政年份:
    2001
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了