An algebro-analytic study on the trace formulas associated with the linear ordinary differential operators and the nonlinear integrable systems
线性常微分算子和非线性可积系统的迹公式的代数分析研究
基本信息
- 批准号:23540255
- 负责人:
- 金额:$ 1.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The structure of the semi-commutative operators associated with the Dirac type operator is clarified. In particular, the Miura transformation, which is the starting point of the soliton theory, is generalized to the whole stationary KdV hierarchy and quite interesting identities are discovered. On the other hands, the SIR model, which is a dynamical system of quite different type, is studied. In addition, applying the trace formulas, the scheme for the construction of whole set of the first integrals associated with the stationary KdV hierarchy is obtained. Using the first integrals, the equation of the eigenvalue problem associated with the linearizing operator is transformed to the ordinary differential equation with the regular singular points on the Riemann sphere, and using that equation, the method to study the analytic properties of the solutions of the stationary KdV hierarchy is explored.
阐明了与Dirac型算子相关的半交换算子的结构。特别地,将作为孤子理论起点的Miura变换推广到整个平稳KdV层次,并发现了相当有趣的恒等式。另一方面,研究了SIR模型,这是一个完全不同类型的动力系统。此外,利用迹公式,得到了与平稳KdV层次相关的第一积分的整体构造方案。利用一阶积分,将与线性化算子相关的特征值问题方程转化为黎曼球上具有正则奇点的常微分方程,并利用该方程,探讨了研究稳态KdV层次解解析性质的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-commutative differential operators associated with the Dirac operator and a new formulation of the mKdV hierarchy
与 Dirac 算子相关的半交换微分算子和 mKdV 层次结构的新公式
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:M.Matsushima;M.Ohmiya
- 通讯作者:M.Ohmiya
Semi-commutative differential operator and Darboux transformation
半交换微分算子和达布变换
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:M. Matsushima;M. Ohmiya
- 通讯作者:M. Ohmiya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHMIYA Mayumi其他文献
OHMIYA Mayumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHMIYA Mayumi', 18)}}的其他基金
Study on the instability of Benjamin-Feir type concerned with nonlinear strongly dispersive systems
非线性强色散系统Benjamin-Feir型不稳定性研究
- 批准号:
19540232 - 财政年份:2007
- 资助金额:
$ 1.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the integrable systems in mathematical physics and applied analysis
数学物理可积系统研究及应用分析
- 批准号:
15540219 - 财政年份:2003
- 资助金额:
$ 1.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the spectrum and the monodromy related to the algebro-geometric potentials
与代数几何势相关的谱和单峰性研究
- 批准号:
13640195 - 财政年份:2001
- 资助金额:
$ 1.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




