Space-time statistical models for detecting emerging outbreaks of rare events.
用于检测罕见事件新爆发的时空统计模型。
基本信息
- 批准号:20300101
- 负责人:
- 金额:$ 9.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2008
- 资助国家:日本
- 起止时间:2008 至 2010
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have developed new statistical models as important tools for detecting emerging outbreaks of rare events threatening human health. The existing methods cannot detect irregularly shaped outbreak areas timely and appropriately. First, we developed a new restricted likelihood ratio to avoid the property of existing scan statistics that tend to detect the cluster much larger than the true cluster by swallowing neighboring regions with non-elevated risk. Second, we developed a new space-time scan statistic which compares the observed number of cases with the unconditional expected number of cases, takes a time-to-time variation of Poisson mean into account and implements an outbreak model to capture localized emerging disease outbreaks more timely and correctly. The proposed models are illustrated with data from weekly surveillance of the number of absentees in primary schools in Kita-Kyushu, Japan, 2006.
我们开发了新的统计模型,作为检测威胁人类健康的罕见事件新爆发的重要工具。现有的方法不能及时和适当地检测不规则形状的爆发区域。首先,我们开发了一个新的限制似然比,以避免现有的扫描统计的属性,往往检测到的集群比真正的集群吞噬相邻区域的非高风险。其次,我们开发了一种新的时空扫描统计量,该统计量将观察到的病例数与无条件的预期病例数进行比较,并考虑泊松均值的时-时变化,并实现了一个爆发模型,以更及时和正确地捕获本地新出现的疾病爆发。拟议的模型说明与数据,每周在北九州,日本,2006年在小学的缺席人数的监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Space-Time Scan Statistics for Outbreak Detection.
用于爆发检测的时空扫描统计数据。
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Aida J;Takahashi K;Yamaoka K;Tango T;松浦好治;Tango T.
- 通讯作者:Tango T.
A Space–Time Scan Statistic for Detecting Emerging Outbreaks
用于检测新爆发疫情的时空扫描统计数据
- DOI:10.1111/j.1541-0420.2010.01412.x
- 发表时间:2011
- 期刊:
- 影响因子:1.9
- 作者:T. Tango;Kunihiko Takahashi;K. Kohriyama
- 通讯作者:K. Kohriyama
A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring
- DOI:10.1186/1476-072x-7-14
- 发表时间:2008-04-11
- 期刊:
- 影响因子:4.9
- 作者:Takahashi, Kunihiko;Kulldorff, Martin;Yih, Katherine
- 通讯作者:Yih, Katherine
A spatial scan statistic with a modified likelihood ratio
具有修正似然比的空间扫描统计量
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:遠藤美智子;滝沢未来;田中香;時高正明;笠岡誠一;中村宗一郎;中島滋;Tango T
- 通讯作者:Tango T
Assignment of grouped exposure levels for trend estimation in a regression analysis of summarized data.
在汇总数据的回归分析中分配分组暴露水平以进行趋势估计。
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Takahashi K;Tango T
- 通讯作者:Tango T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANGO Toshiro其他文献
TANGO Toshiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANGO Toshiro', 18)}}的其他基金
Statistical models for detecting emerging outbreaks for health risk monitoring
用于检测新出现的疫情以进行健康风险监测的统计模型
- 批准号:
23300107 - 财政年份:2011
- 资助金额:
$ 9.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical Models of Bio-surveillance for Monitoring Disease Outbreak
监测疾病爆发的生物监测统计模型
- 批准号:
16300091 - 财政年份:2004
- 资助金额:
$ 9.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical Model for evaluating health effects of dioxins around waste incinerators
评估垃圾焚烧炉周围二恶英健康影响的统计模型
- 批准号:
13480072 - 财政年份:2001
- 资助金额:
$ 9.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On the estimation of date of infection in an outbreak of diarrhea due to contaminated foods
一起受污染食品引起的腹泻暴发感染日期的推算
- 批准号:
09680319 - 财政年份:1997
- 资助金额:
$ 9.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




