Transversal study on Ultradiscretizing phenomena in algebraic geometry, learning theory and biological mathematics

代数几何、学习理论和生物数学中超离散现象的横向研究

基本信息

  • 批准号:
    21540045
  • 负责人:
  • 金额:
    $ 2.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2009
  • 资助国家:
    日本
  • 起止时间:
    2009 至 2012
  • 项目状态:
    已结题

项目摘要

(1) For the fourteen unimodal exceptional hypersurface singularities, we have constructed algebraic cycles in the derived category of K3 surfaces, and shown that we can recover the Dynkin diagrams from their categorical intersection numbers.(2) We have shown that the famous ninety-five families of weighted K3 hypersurfaces are, in fact, essentially seventy-five families by constructing concrete correspondences.(3) We introduced a geometric point of view to the scheduling problems for the first time, showed that the change of critical paths occurred at a tropical hypersurface and developed totally new method to visualize the transition of paths.(4) We did a topological classification of tropical elliptic curves.(5) We discussed about algebro-geometric method for acquiring abilities by neural networks.
(1) For the fourteen unimodal exceptional hypersurface singularities, we have constructed algebraic cycles in the derived category of K3 surfaces, and shown that we can recover the Dynkin diagrams from their categorical intersection numbers.(2) We have shown that the famous ninety-five families of weighted K3 hypersurfaces are, in fact, essentially seventy-five families by constructing concrete (3)我们首次引入了调度问题的几何观点,表明临界路径的变化发生在热带性超表面上,并开发了全新的方法来可视化路径的过渡。(4)我们对热带椭圆曲线进行了拓扑分类。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isomorphism among families of weighted K3 hypersurfaces,Topology of singularities and related topics,the Institute of Mathematics
加权K3超曲面族间的同构,奇点拓扑及相关专题,数学研究所
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masanori Kobayashi;M.Mase;Hideto Asashiba;吉川謙一;Chikashi Miyazaki;M. Kobayashi
  • 通讯作者:
    M. Kobayashi
A note on exceptional umimodal singularities and K3 surfaces
关于特殊的 umimodal 奇点和 K3 曲面的注释
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masanori Kobayashi;et al
  • 通讯作者:
    et al
A not e on exceptional unimodal singularities and K3 surfaces
关于异常单峰奇点和 K3 曲面的注释
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kobayashi;M. Mase and K. Ueda
  • 通讯作者:
    M. Mase and K. Ueda
Z-affine transformations and families of K3 hypersurfaces, 2011 NIMS Hot Topics Workshop on Computational Aspects of Birational Geometry
Z 仿射变换和 K3 超曲面族,2011 NIMS 双有理几何计算方面的热门主题研讨会
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    亀山統胤;西田憲司;H. Ishida and H. Tokunaga;Miyazaki Chikashi;Izuru Mori;M. Kobayashi
  • 通讯作者:
    M. Kobayashi
Tropical Geometry of PERT
PERT 的热带几何
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masanori Kobayashi;et al;Terai Naoki and Trung Ngo Viet;Hideto Asashiba;T. Ashikaga and K.-I. Yoshikawa;西田憲司;Ogata Shoetsu;M. Kobayashi and S. Odagiri
  • 通讯作者:
    M. Kobayashi and S. Odagiri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBAYASHI Masanori其他文献

Science of episodic memory: New insights in memory research
情景记忆科学:记忆研究的新见解
  • DOI:
    10.5265/jcogpsy.20.43
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ITO Yuichi;MATSUMOTO Noboru;KOBAYASHI Masanori;NISHIYAMA Satoru;MIYOSHI Kiyofumi;MURAYAMA Kou;KAWAGUCHI Jun
  • 通讯作者:
    KAWAGUCHI Jun

KOBAYASHI Masanori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBAYASHI Masanori', 18)}}的其他基金

Suppression of visual and face memory
抑制视觉和面部记忆
  • 批准号:
    26870268
  • 财政年份:
    2014
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on T-duality of Calabi-Yau manifolds of dimension less than or equal to four
小于等于四维的Calabi-Yau流形的T对偶性研究
  • 批准号:
    16540031
  • 财政年份:
    2004
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formability in Biaxial Stretch of Aluminum Sheets and Foil with Very Small Punch
极小冲头铝板和铝箔双向拉伸的成形性
  • 批准号:
    05650132
  • 财政年份:
    1993
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Rapid Identification of Pathogenic Fich Bacteria
致病性菲鱼细菌的快速鉴定
  • 批准号:
    04556027
  • 财政年份:
    1992
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)

相似海外基金

代数幾何学の特異点論による機械学習理論の解析およびその応用
利用代数几何奇点理论分析机器学习理论及其应用
  • 批准号:
    24K15114
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
21世紀のヒルベルト第15問題―深化と展望
希尔伯特21世纪第15个问题——深化与展望
  • 批准号:
    23H01075
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of invariants of singularities in birational geometry via arc spaces
基于弧空间的双有理几何奇点不变量研究
  • 批准号:
    23K12958
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Projective geometry in arbitrary characteristic and its application to fundamental algebraic varieties
任意特征的射影几何及其在基本代数簇中的应用
  • 批准号:
    22K03236
  • 财政年份:
    2022
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularity theory in mixed characteristic and its applications to the theory of F-singularities and birational geometry
混合特性奇异性理论及其在F-奇异性和双有理几何理论中的应用
  • 批准号:
    22H01112
  • 财政年份:
    2022
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了