Asymptotic behavior and singular limit problem for dissipative hyperbolic equations
耗散双曲方程的渐近行为和奇异极限问题
基本信息
- 批准号:21540201
- 负责人:
- 金额:$ 1.33万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2009
- 资助国家:日本
- 起止时间:2009 至 2011
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We considered dissipative Kirchhoff equation with dissipation, where the coefficient of the dissipation decays with respect to the time valuable. First we consider dissipative Kirchhoff equation where the coefficient of the dissipation term depends time and space valuables and decays slowly than the critical exponent with respect to the time valuable. Then we proved the unique global existence of the solution for initial data with small Sobolev norm. Secondly we considered the dissipative Kirchhoff equation where the coefficient of the dissipation term depends only on time valuable which decays rapidly. Then we showed the unique global solvability and existence of the scattering on some class of the functions.
考虑了耗散的Kirchhoff方程,其中耗散系数随时间衰减。首先我们考虑耗散的Kirchhoff方程,其中耗散项的系数依赖于时间和空间值,并且相对于时间值比临界指数衰减得慢。然后证明了在小Sobolev范数下解的唯一整体存在性。其次,我们考虑了耗散Kirchhoff方程,其中耗散项的系数只依赖于时间值,衰减很快。然后证明了一类函数的唯一整体可解性和散射的存在性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyperbolic–parabolic singular perturbation for quasilinear equations of Kirchhoff type with weak dissipation
- DOI:10.1002/mma.1114
- 发表时间:2009-10
- 期刊:
- 影响因子:2.9
- 作者:T. Yamazaki
- 通讯作者:T. Yamazaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMAZAKI Taeko其他文献
YAMAZAKI Taeko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMAZAKI Taeko', 18)}}的其他基金
Nonlinear hyperbolic-parabolic singular perturbation
非线性双曲-抛物线奇异摄动
- 批准号:
19540199 - 财政年份:2007
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior for wave equations with damping term
带阻尼项的波动方程的渐近行为
- 批准号:
17540173 - 财政年份:2005
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the time global solutions for the partial differential equations of Kirchhoff type
基尔霍夫型偏微分方程时间全局解的研究
- 批准号:
14540188 - 财政年份:2002
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)