Study of a 3D Cavity Flow using the Numerical Scheme with High Accuracy
使用高精度数值方案研究 3D 空腔流动
基本信息
- 批准号:21540383
- 负责人:
- 金额:$ 2.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2009
- 资助国家:日本
- 起止时间:2009 至 2011
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerical simulations are carried out for the three-dimensional steady flow in a lid-driven rectangular cavity using the combined compact scheme with high accuracy and high resolution. We study the incompressible flow in a cavity with spanwise aspect ratio 1. 0 and 6. 55, and aspect ratios 0. 4, 0. 6, 1. 0 and 1. 4. Streamlines are obtained from the steady velocity field data with high accuracy and Poincare sections are plotted from the streamlines for Reynolds numbers ranging from 100 to 500. There are two types of streamlines : localized streamlines near a closed curve and chaotic streamlines. In the Poincare sections we can find various structures of ovals of invariant tori and resonant islands by localized streamlines in the regions near the end-wall and irregularly distributed points by chaotic streamlines. The structures in the Poincare sections are similar to those in the phase portraits of one-dimensional non-autonomous Hamiltonian system. In particular, we found that the Poincare sections of streamlines show striking similarities for the 3 : 1 and 2 : 1 resonances as the Reynolds number is changed. When the Reynolds number is larger than that in the 2 : 1 resonance, we obtained the chaotic streamlines in the whole flow region. The present study show that existence of the invariant tori and disruption by the resonances are generally observed in steady cavity flows in cavities with different aspect ratios and spanwise aspect ratios.
采用高精度、高分辨率的组合式压缩格式对盖驱动矩形腔内三维定常流动进行了数值模拟。研究了展向长径比为1的空腔内的不可压缩流动。0和6。55,宽高比为0。4、0。6、1。0和1。4. 从稳定速度场数据中获得了高精度的流线,并在雷诺数为100 ~ 500的范围内绘制了庞加莱剖面。流线有两种类型:闭合曲线附近的局部流线和混沌流线。在庞加莱剖面中,我们可以通过局部流线在端壁附近的区域找到不变环面椭圆和共振岛的各种结构,通过混沌流线找到不规则分布的点。庞加莱剖面中的结构与一维非自治哈密顿系统相图中的结构相似。特别是,我们发现流线的庞加莱截面随着雷诺数的变化,在3:1和2:1共振中表现出惊人的相似性。当雷诺数大于2:1共振时,得到了整个流动区域的混沌流线。本研究表明,在不同长径比和展向长径比的腔体中,稳定腔体流动普遍存在不变环面和共振破坏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Streamlines of Vortical Flows in 3D Lid-driven Cavities
3D 盖驱动腔中旋涡流的流线
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:K. Ishii;S. Adachi
- 通讯作者:S. Adachi
Small-scale statistics in direct numerical simulation of turbulent Channel flow at high-Reynolds number
高雷诺数湍流通道流直接数值模拟中的小尺度统计
- DOI:10.1088/1742-6596/318/2/022016
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:K. Morishita;T. Ishihara;Y. Kaneda
- 通讯作者:Y. Kaneda
高レイノルズ数等方乱流の直接数値シミュレーション-小スケールにおける統計的普遍性
高雷诺数各向同性湍流的直接数值模拟 - 小尺度的统计普适性
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:金田行雄;石原卓
- 通讯作者:石原卓
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHII Katsuya其他文献
ISHII Katsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHII Katsuya', 18)}}的其他基金
Research on a highly accurate parallel numerical methods for fluid equations with portability
高精度可移植流体方程并行数值方法研究
- 批准号:
16605004 - 财政年份:2004
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of numerical schemes for the fluid flows with accurate boundary condition
开发具有精确边界条件的流体流动数值方案
- 批准号:
10440028 - 财政年份:1998
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
FMitF: Track 1: Foundational Approaches for End-to-end Formal Verification of Computational Physics
FMitF:轨道 1:计算物理端到端形式验证的基础方法
- 批准号:
2219997 - 财政年份:2022
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
Computational Physics/Biophysics
计算物理/生物物理学
- 批准号:
CRC-2020-00225 - 财政年份:2022
- 资助金额:
$ 2.83万 - 项目类别:
Canada Research Chairs
Computational Physics/Biophysics
计算物理/生物物理学
- 批准号:
CRC-2020-00225 - 财政年份:2021
- 资助金额:
$ 2.83万 - 项目类别:
Canada Research Chairs
EAGER: Preserve/Destroy Decisions for Simulation Data in Computational Physics and Beyond
EAGER:计算物理及其他领域模拟数据的保存/销毁决策
- 批准号:
2138773 - 财政年份:2021
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
New Development of Computational Physics with Tensor Network Scheme
张量网络方案计算物理新进展
- 批准号:
20H00148 - 财政年份:2020
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Breaking the Cycle through Computational Physics: Preparing West Virginia's Rural, First Generation College Students for the Careers of the Future
通过计算物理打破循环:让西弗吉尼亚州农村的第一代大学生为未来的职业做好准备
- 批准号:
1833694 - 财政年份:2019
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
強相関物質におけるボソン自由度の形成とその量子凝縮に関する計算物理学的新展開
计算物理学关于强相关材料中玻色子自由度的形成及其量子凝聚的新进展
- 批准号:
19J10805 - 财政年份:2019
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
EAGER: Preserve/Destroy Decisions for Simulation Data in Computational Physics and Beyond
EAGER:计算物理及其他领域模拟数据的保存/销毁决策
- 批准号:
1839010 - 财政年份:2018
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
Support for 2018 Conference on Computational Physics
支持2018年计算物理会议
- 批准号:
1834259 - 财政年份:2018
- 资助金额:
$ 2.83万 - 项目类别:
Standard Grant
Development of a parallel matrix library for computational physics with high strong-scaling performance
开发具有高强扩展性能的计算物理并行矩阵库
- 批准号:
17H02828 - 财政年份:2017
- 资助金额:
$ 2.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)