FMitF: Track 1: Foundational Approaches for End-to-end Formal Verification of Computational Physics

FMitF:轨道 1:计算物理端到端形式验证的基础方法

基本信息

项目摘要

Numerical solutions of differential equations are widely used in analysis and design tasks in science and engineering. Examples include modeling climate change, discovering new materials, designing aircraft, and understanding the early universe. This simulation process, however, involves errors arising from a number of sources such as the finiteness of the numerical discretization, potential lack of convergence of algorithms, floating-point arithmetic, and sampling required to quantify uncertainties. The project's novelties are a new formalism to ensure a rigorous handle over errors and uncertainties in numerical methods, and computer-checked proofs of the formalization and applications. The project's impact is a better understanding and quantification of the errors involved in scientific computations, leading to a higher confidence in simulation-informed analysis and design of natural and engineered systems.The current state of the art in numerical analysis relies on paper proofs. In practical implementations, the impact of rounding error is seldom quantified, and even when quantified, not formalized. The interplay with the implementation (C code level and below) is also not clearly assessed. Practitioners use intuitive techniques such as convergence tests and the method of manufactured solutions to manually check the viability of a numerical algorithm. Since these techniques yield necessary yet not sufficient checks, scientists rely on their expertise to guide applications. This work offers the possibility of the user setting a tolerable error threshold, and being assured of achieving it via their implementation in several computational physics tasks. The idea of bounding errors asymptotically is uncommon in formal methods, and will inevitably lead to the development of tools and techniques to better handle asymptotic guarantees in interactive theorem proving. As a side effect, this will expand and consolidate formal-methods libraries handling real arithmetic and limits. This work is expected to be transformational for computational physics, and spur the development of a sub-field at the intersection of formal methods and computational science. The proofs are mechanically checked in an interactive theorem prover using a variety of mathematical results ranging from convergence of functions to floating-point arithmetic and C semantics, thereby using various theories in one proof of correctness. The project creates a new space of physical applications to formal methods researchers, and for computational physicists to derive value from formalizing their programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微分方程的数值解广泛应用于科学和工程的分析和设计任务中。例子包括模拟气候变化,发现新材料,设计飞机和理解早期宇宙。然而,这个模拟过程中,涉及的误差所产生的一些来源,如有限的数值离散化,潜在的缺乏收敛的算法,浮点运算,和采样所需的量化不确定性。该项目的新颖之处是一种新的形式主义,以确保严格处理数值方法中的错误和不确定性,以及形式化和应用程序的计算机检查证明。该项目的影响是更好地理解和量化科学计算中涉及的错误,从而提高对自然和工程系统的模拟分析和设计的信心。目前数值分析的最新发展依赖于纸质证明。在实际的实施中,舍入误差的影响很少被量化,即使量化,也没有正式化。与实现(C代码级及以下)的相互作用也没有得到明确评估。从业者使用直观的技术,如收敛性测试和制造解决方案的方法来手动检查数值算法的可行性。由于这些技术产生必要但不充分的检查,科学家依靠他们的专业知识来指导应用。这项工作提供了用户设置一个可容忍的错误阈值的可能性,并确保实现它通过在几个计算物理任务的实现。渐近边界误差的概念在形式方法中并不常见,这将不可避免地导致工具和技术的发展,以更好地处理交互式定理证明中的渐近保证。作为副作用,这将扩展和巩固处理真实的算术和极限的形式方法库。这项工作预计将是计算物理学的变革,并刺激形式方法和计算科学交叉的子领域的发展。在交互式定理证明器中使用各种数学结果(从函数的收敛到浮点运算和C语义)对证明进行机械检查,从而在一个正确性证明中使用各种理论。该项目为形式方法研究人员创造了一个新的物理应用空间,并为计算物理学家从形式化程序中获得价值创造了空间。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean-Baptiste Jeannin其他文献

Sift: Using Refinement-guided Automation to Verify Complex Distributed Systems
Sift:使用细化引导的自动化来验证复杂的分布式系统
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haojun Ma;Hammad Ahmad;Aman Goel;Eli Goldweber;Jean-Baptiste Jeannin;Manos Kapritsos;Baris Kasikci
  • 通讯作者:
    Baris Kasikci

Jean-Baptiste Jeannin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean-Baptiste Jeannin', 18)}}的其他基金

SHF: Small: A Hybrid Synchronous Language for Verifiable Execution of Cyber-Physical Systems
SHF:Small:一种用于网络物理系统可验证执行的混合同步语言
  • 批准号:
    2348706
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Conference: Midwest Programming Languages Summits 2023, 2024, 2025
会议:2023、2024、2025 年中西部编程语言峰会
  • 批准号:
    2330888
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了