Study on periodic surfaces using their representations by integrals of conformal one-forms
使用共形一式积分表示的周期曲面研究
基本信息
- 批准号:22540064
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2010
- 资助国家:日本
- 起止时间:2010 至 2012
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The correspondence between the Lopez-Ros deformation of a minimal surface in Euclidean (four-)space and the dressing transformations of two families of flat connections associated with a minimal surface was cleared by the joint work with Dr, Katrin Leschke.This result was presented in domestic or foreign conferences and seminars. A generalization of harmonic inverse mean curvature and their transforms was studied. The result was published in an international journal. An analog of the Schwarz lemma for super-conformal surfaces in four-dimenaional Euclidean space is obtained. A preprint about this result was written and submitted to an international journal. Generalizing the Riemann bilinear relation for holomorhphic one-forms, a condition for the existence of periodic surfaces was obtained. A preprint about this result was written and submitted to an international journal.
本文与Katrin Leschke博士共同研究了欧氏(四维)空间中极小曲面的Lopez-Ros变形与极小曲面的两族平坦联络的Dressing变换之间的对应关系,并在国内外的会议和研讨会上发表。研究了调和反平均曲率及其变换的推广.研究结果发表在一份国际期刊上。得到了四维欧氏空间中超共形曲面的施瓦茨引理的一个类似结果。关于这一结果的预印本已经撰写并提交给了一份国际期刊。将黎曼双线性关系推广到全纯单形,得到了周期曲面存在的一个条件。关于这一结果的预印本已经撰写并提交给了一份国际期刊。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
曲面上のベクトル値完全一次微分形式
曲面上的向量值完全一阶微分形式
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;Katsuhiro Moriya;守屋克洋
- 通讯作者:守屋克洋
球面への調和写像に付随するtt^*束
tt^* 与调和映射到球体相关的束
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;Katsuhiro Moriya;守屋克洋;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋
- 通讯作者:守屋克洋
Description of a mean curvature sphere of a surface by quaternionic holomorphic geometry
用四元数全纯几何描述表面的平均曲率球面
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya
- 通讯作者:Katsuhiro Moriya
Surfaces of constant mean curvature with symmetry
具有对称性的恒定平均曲率曲面
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;守屋克洋;Katsuhiro Moriya;守屋克洋;Katsuhiro Moriya
- 通讯作者:Katsuhiro Moriya
リーマン面上の四元数的正則直線束とウィルモア曲面 (2)
黎曼曲面上的四元正则线丛和 Wilmore 曲面 (2)
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Kurosu;Sanae and Moriya;Katsuhiro;Kokoro Tanaka;守屋 克洋;高瀬将道;高瀬将道;守屋 克洋;大黒顕司・高瀬将道;Katsuhiro Moriya;高瀬将道;Katsuhiro Moriya;Katsuhiro Moriya;守屋克洋;守屋克洋
- 通讯作者:守屋克洋
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORIYA Katsuhiro其他文献
MORIYA Katsuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORIYA Katsuhiro', 18)}}的其他基金
Property of super-conformal maps inherited from holomorphic maps and its application
全纯映射的超共形映射的性质及其应用
- 批准号:
25400063 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Lagrangian surfaces in the complex Euclidean plane in terms of quaternionic holomorphic geometry
用四元全纯几何研究复欧几里得平面中的拉格朗日面
- 批准号:
19740028 - 财政年份:2007
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
微分幾何学に基づいた非平衡熱力学における普遍的原理の探究
基于微分几何的非平衡热力学普遍原理探索
- 批准号:
23K22412 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
サブリーマン多様体の微分幾何学の特異点論的研究
亚睿曼流形微分几何的奇异性理论研究
- 批准号:
24K16918 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
微分幾何学による木材性質変動の樹齢依存性評価
使用微分几何评估木材特性变化的树龄依赖性
- 批准号:
24K09023 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
特異点の微分幾何学およびその応用
奇点微分几何及其应用
- 批准号:
23K20794 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
微分幾何学的アプローチによる外力と障害物の存在下における最短経路探索
使用微分几何方法在存在外力和障碍物的情况下搜索最短路径
- 批准号:
23K03226 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
- 批准号:
22KF0255 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2305255 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
- 批准号:
EP/X032779/1 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Fellowship