On geometric analysis related to the Cosmic Censorship Conjecture

论与宇宙审查猜想相关的几何分析

基本信息

项目摘要

Based on ideas inherent in two major advances in the field of geometric analysis, namely, Perelman's resolution of Ricci flow, and Bray's proof of Riemannian Penrose inequality using conformal deformation of Riemannian metrics, the PI has succeeded in generalizing the Penrose inequality, concerning the solution of the Einstein-Maxwell equation. The Investigator Nakamura has also obtained a set of interesting results in the field of nonlinear hyperbolic partial differential equations, which are closely related to the Einstein equation.Under the support of the current grant, two international meetings were organized in Japan, and together with attending academic meetings abroad, the investigators Yamada and Nakamura established opportunities for exchanges of ideas, which led to the collaboration with Gilbert Weinstein and Marcus Khuri, which in turn became the major work described above.
基于几何分析领域的两个主要进步的思想,即佩雷尔曼(Perelman)解决里奇(Ricci)流动的解决,以及布雷使用riemannian Metrics的综合变形的Riemannian Penrose不平等的证明,PI成功地使Penrose的不平等现象成功地使eIntein Maxwell sore noreine streation Maxwell。 The Investigator Nakamura has also obtained a set of interesting results in the field of nonlinear hyperbolic partial differential equations, which are closely related to the Einstein equation.Under the support of the current grant, two international meetings were organized in Japan, and together with attending academic meetings abroad, the investigators Yamada and Nakamura established opportunities for exchanges of ideas, which led to the collaboration with Gilbert Weinstein and Marcus库里(Khuri)又成为上述主要工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lower bounds for the area of black holes in terms of mass, charge, and angular momentum
黑洞面积的质量、电荷和角动量下限
  • DOI:
    10.1103/physrevd.88.024048
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Sergio Dain;Marcus Khuri;Gilbert Weinstein;Sumio Yamada
  • 通讯作者:
    Sumio Yamada
The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime
德西特时空中半线性克莱因-戈登方程的柯西问题
On Variational Formulation of Free Boundaries
关于自由边界的变分公式
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Mizumura;T.Tanimori et al.;Sumio Yamada
  • 通讯作者:
    Sumio Yamada
A counterexample to a Penrose inequality conjectured by Gibbons.
吉本斯猜想的彭罗斯不等式的反例。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Sergio Dain;Gilbert Weinstein;Sumio Yamada
  • 通讯作者:
    Sumio Yamada
On variational characterization of exact solutions in general relativity
广义相对论中精确解的变分表征
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kotani, M.;Imai, T.;Katayama, H.;Yui, Y.;Tange, Y.;Kaneda, H.;Nakagawa, T.;Enya, K.;Shinya Nishibata;Sumio Yamada
  • 通讯作者:
    Sumio Yamada
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMADA Sumio其他文献

YAMADA Sumio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMADA Sumio', 18)}}的其他基金

Can lifestyle intervention improve cerebral blood flow in patients with mild stroke?
生活方式干预能否改善轻度中风患者的脑血流量?
  • 批准号:
    23650322
  • 财政年份:
    2011
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of electric stimulation to inhibit post-operative hyper catabolism of skeletal muscles
开发电刺激抑制术后骨骼肌过度分解代谢
  • 批准号:
    22300186
  • 财政年份:
    2010
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Canonical Riemannian metrics on simplicial complexes
单纯复形的规范黎曼度量
  • 批准号:
    20540201
  • 财政年份:
    2008
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Preventive Effect of Exercise for Management of Daily Functioning in Patients with CHF (PTMaTCH) study
运动对慢性心力衰竭患者日常功能管理的预防作用 (PTMaTCH) 研究
  • 批准号:
    19300190
  • 财政年份:
    2007
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

4階非線形放物型偏微分方程式で表される幾何学的発展方程式の解析手法の構築
四阶非线性抛物型偏微分方程几何演化方程分析方法的构建
  • 批准号:
    24K06810
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
積分相互作用付き発展方程式に対する偏微分方程式系近似の理論確立と数理解析
积分相互作用演化方程偏微分方程组逼近的理论建立与数学分析
  • 批准号:
    24K06848
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非局所項を含む界面発展方程式の境界値問題
包含非局部项的界面演化方程的边值问题
  • 批准号:
    24KJ0269
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
線形領域を越えた非平衡系の特異性を記述する発展方程式と非局所非線形解析学の展開
描述超出线性区域的非平衡系统奇点的演化方程以及非局部非线性分析的发展
  • 批准号:
    24H00184
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
深層学習を用いた事後観測データからの発展方程式抽出手法の開発
利用深度学习从观测后数据中提取进化方程的方法的开发
  • 批准号:
    23K25801
  • 财政年份:
    2024
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了