Convergence group actions and their depth

趋同群体行动及其深度

基本信息

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATSUDA Yoshifumi其他文献

Minimal networks for sensor counting problem using discrete Euler calculus
使用离散欧拉演算解决传感器计数问题的最小网络

MATSUDA Yoshifumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATSUDA Yoshifumi', 18)}}的其他基金

Diffeomorphism group of the circle and discontinuous groups of theuniversal Teichmuller curve
圆的微分同胚群与通用Teichmuller曲线的不连续群
  • 批准号:
    22740034
  • 财政年份:
    2010
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

幾何学的群論における新しい指導的理論の確立
几何群论新指导理论的建立
  • 批准号:
    20H00114
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Towards A Map Of M-theory
迈向 M 理论地图
  • 批准号:
    19K03829
  • 财政年份:
    2019
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An interpretation of finite type invariants from the viewpoint of the topology of embedding spaces
从嵌入空间拓扑的角度解释有限类型不变量
  • 批准号:
    16K05144
  • 财政年份:
    2016
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relatively hyperbolic structures of groups
群的相对双曲结构
  • 批准号:
    15K17534
  • 财政年份:
    2015
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Diversified research on the geometry of affinely connected manifolds and its application
仿射流形几何形状的多元化研究及其应用
  • 批准号:
    15K04861
  • 财政年份:
    2015
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了