Limitations and extensions of the Gilbert equation, and calculation of material parameters related to spin damping: An ab-initio study
吉尔伯特方程的局限性和扩展,以及与自旋阻尼相关的材料参数的计算:从头算研究
基本信息
- 批准号:5430749
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2004
- 资助国家:德国
- 起止时间:2003-12-31 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For the design of magnetic switching devices it is essential to optimize the magnetization reversal process with respect to the form of the external field, the geometry of the sample and the internal material parameters including those characterizing the damping of the spin dynamics. This damping is usually described by a Gilbert damping term in the equation of motion for the spins, which contains only one scalar parameter, the damping constant. All the efforts so far were devoted to optimize this parameter which is assumed to be independent of the magnetic state. It is often assumed that this parameter is large for systems with large anisotropy, and that it suffices to use one unique value of this parameter for all length scales (defined by the cell size in micromagnetic simulations, or by the instrumental resolution). In the present project we want to investigate the limitations of the Gilbert equation and to explore their possible necessary extensions, and we want to calculate the material parameters related to damping by the ab-initio density functional electron theory. Thereby we use a physical model which contains all possible contributions to damping in adiabatic approximation and which - in its simplest form - contains only one parameter. This enables us to calculate quantitatively the relative importance of various possible additional terms to the Gilbert equation. By considering systems with various dimensionality and hence various magnetic anisotropy we want to investigate the relation between damping and magnetic anisotropy. Finally, we will consider the scaling behaviour of the parameters describing damping for various length scales.
对于磁开关器件的设计,必须针对外场的形式、样品的几何形状和内部材料参数(包括表征自旋动力学阻尼的参数)优化磁化反转过程。这种阻尼通常用自旋运动方程中的吉尔伯特阻尼项来描述,它只包含一个标量参数,即阻尼常数。到目前为止,所有的努力都致力于优化这个参数,假设它是独立的磁状态。通常假设该参数对于各向异性较大的系统来说很大,并且对于所有长度尺度(由微磁模拟中的单元尺寸或仪器分辨率定义)使用该参数的一个唯一值就足够了。在本项目中,我们要调查的限制吉尔伯特方程,并探讨其可能的必要的扩展,我们要计算的材料参数相关的阻尼从头算密度泛函电子理论。因此,我们使用一个物理模型,其中包含所有可能的贡献,阻尼绝热近似和-在其最简单的形式-只包含一个参数。这使我们能够定量地计算各种可能的附加项对吉尔伯特方程的相对重要性。通过考虑具有不同维数和不同磁各向异性的系统,我们想研究阻尼和磁各向异性之间的关系。最后,我们将考虑的尺度行为的参数描述阻尼不同的长度尺度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Manfred Fähnle其他文献
Professor Dr. Manfred Fähnle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Manfred Fähnle', 18)}}的其他基金
Calculation of the atomic disorder and the phase diagrams in the binary system NiAl and in the ternary system (Ni, Fe)Al including the effect of vacancies
计算二元体系 NiAl 和三元体系 (Ni, Fe)Al 中的原子无序度和相图,包括空位的影响
- 批准号:
5241742 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
Calculation of the magnetic anisotropy at surfaces and interfaces of rare-earth metals by the electron theory in local spin-density approximation
局域自旋密度近似电子理论计算稀土金属表面和界面磁各向异性
- 批准号:
5214130 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
- 批准号:
23K10979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multivariable and Higher order extensions of discrete Painlev\'e equaitons
离散 Painlev 方程的多变量和高阶扩展
- 批准号:
23K03173 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: characterizing and optimizing extensions of LCDM
RUI:表征和优化 LCDM 的扩展
- 批准号:
2308173 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
- 批准号:
479481 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Assessing Tele-Health Outcomes in Multiyear Extensions of Parkinson's Disease Trials-2 (AT-HOME PD-2)
评估帕金森病多年扩展试验中的远程医疗结果 Trials-2 (AT-HOME PD-2)
- 批准号:
10658165 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The essential roles of primary cilia in heterotopic ossification
初级纤毛在异位骨化中的重要作用
- 批准号:
10734116 - 财政年份:2023
- 资助金额:
-- - 项目类别: