The Regularity Method for Sparse Graphs and Hypergraphs

稀疏图和超图的正则方法

基本信息

项目摘要

This proposal seeks further development and understanding of the Regularity Method, which has had a series of successes in Discrete Mathematics. The Regularity Lemma of E. Szemerédi for graphs asserts that every dense graph can be decomposed into relatively few random-like subgraphs. This random-like behavior enables one to find and enumerate subgraphs of a given isomorphism type. This observation is called Counting Lemma. The interplay of Szemerédi's Regularity Lemma and the Counting Lemma, referred to as the Regularity Method for dense graphs, has many applications in the area ot extremal graph theory. Since random graphs of a given edge-density are usually easier to analyze than arbitrary graphs of the same edge-density, the Regularity Method enables us to transfer some methods applicable to random graphs to the class of all graphs. In recent years the Regularity Method was partly expanded to new types of discrete structures: sparse graphs and k-uniform hypergraphs. In particular, analogues of the Regularity Lemma for these combinatorial objects were established. In the proposed program, we seek a deeper understanding of the random-like behavior guaranteed by those Regularity Lemmas. Furthermore, we focus on applications of these novel techniques in the area of extremal combinatorics.
这一建议寻求对在离散数学中取得一系列成功的正则性方法的进一步发展和理解。E.Szemerédi关于图的正则性引理认为,每个稠密图都可以分解成相对较少的类随机子图。这种类似随机的行为使人们能够找到并枚举给定同构类型的子图。这一观察结果称为计数引理。Szemerédi正则性引理和Counting引理的相互作用,被称为稠密图的正则性方法,在极值图论领域有着广泛的应用。由于具有给定边密度的随机图通常比具有相同边密度的任意图更容易分析,因此正则性方法使我们能够将一些适用于随机图的方法转移到所有图的类。近年来,正则性方法被部分地扩展到新的离散结构:稀疏图和k-一致超图。特别地,建立了这些组合对象的正则性引理的类比。在所提出的程序中,我们寻求对那些正则性引理所保证的类随机行为的更深层次的理解。此外,我们还重点讨论了这些新技术在极值组合数学领域中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Mathias Schacht其他文献

Professor Dr. Mathias Schacht的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Mathias Schacht', 18)}}的其他基金

Discrete Mathematics
离散数学
  • 批准号:
    163043275
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Professorships
Diskrete Mathematik
离散数学
  • 批准号:
    182015083
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships

相似国自然基金

偏线性分位数样本截取和选择模型的估计与应用—基于非参数筛分法(Sieve Method)
  • 批准号:
    72273091
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Network Topology Recovery Method using Sparse Modeling
使用稀疏建模的网络拓扑恢复方法
  • 批准号:
    22KJ3056
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
An establishment of a fast measurement method for wide-coverage radiation performance of terahertz band antennas using a sparse near-field distribution
稀疏近场分布太赫兹频段天线广覆盖辐射性能快速测量方法的建立
  • 批准号:
    22K14256
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A new signal reconstruction method combining sparse modeling and optimal interpolation approximation theory
稀疏建模与最优插值逼近理论相结合的信号重构新方法
  • 批准号:
    20K04489
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of urban wind estimation method based on sparse sensor network
基于稀疏传感器网络的城市风估计方法研究进展
  • 批准号:
    20H02308
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a magnetic stimulation method for magnetic pharmacy: application of a sparse modeling method to magnetic stimulation systems
磁药学磁刺激方法的开发:稀疏建模方法在磁刺激系统中的应用
  • 批准号:
    19H04178
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of precision estimation method of rainfall erosivity for better understanding of soil erosion in data-sparse regions
开发降雨侵蚀力精确估算方法,以更好地了解数据稀疏地区的土壤侵蚀
  • 批准号:
    19K13434
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of high-speed general-purpose cell sorting method by sparse modeling and image processing
通过稀疏建模和图像处理开发高速通用细胞分选方法
  • 批准号:
    19K12104
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of polynomial time solution method using sparse structure of links in large-scale social network analysis
大规模社交网络分析中使用链接稀疏结构的多项式时间求解方法的发展
  • 批准号:
    18K11271
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The sparse hypergraph regularity method
稀疏超图正则方法
  • 批准号:
    EP/P032125/1
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of Seismic Damage Assessment Method for Instrumented Large Civil Structures using Sparse Representation Techniques
利用稀疏表示技术开发仪表化大型土木结构地震损伤评估方法
  • 批准号:
    18K04320
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了