Group orbits in garmonic analysis and ergodic theory.

调和分析和遍历理论中的群轨道。

基本信息

  • 批准号:
    DP0210021
  • 负责人:
  • 金额:
    $ 18.72万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2002
  • 资助国家:
    澳大利亚
  • 起止时间:
    2002-01-31 至 2005-07-30
  • 项目状态:
    已结题

项目摘要

Researchers from many areas need a type of mathematical analysis which involves the behaviour of a system - which may be a set of data points - under repeated application of some operation or group of operations. The structures arising from this kind of p
来自许多领域的研究人员需要一种数学分析,这种分析涉及系统的行为-可能是一组数据点-在重复应用某些操作或一组操作的情况下。由这种p产生的结构

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof Anthony Dooley其他文献

Prof Anthony Dooley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof Anthony Dooley', 18)}}的其他基金

Group actions in random dynamical systems
随机动力系统中的群作用
  • 批准号:
    DP120103005
  • 财政年份:
    2012
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Discovery Projects
Dynamical systems: theory and practice
动力系统:理论与实践
  • 批准号:
    DP0878065
  • 财政年份:
    2008
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Discovery Projects
Symmetries in analysis
分析中的对称性
  • 批准号:
    DP0557457
  • 财政年份:
    2005
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Discovery Projects
Entropy and maximal entropy in Markov systems
马尔可夫系统中的熵和最大熵
  • 批准号:
    LX0346775
  • 财政年份:
    2003
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Linkage - International
Ergodic theory and number theory
遍历理论和数论
  • 批准号:
    LX0242377
  • 财政年份:
    2002
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Linkage - International
Ergodic theory and number theory
遍历理论和数论
  • 批准号:
    ARC : LX0242377
  • 财政年份:
    2002
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Linkage - International
Group orbits in garmonic analysis and ergodic theory.
调和分析和遍历理论中的群轨道。
  • 批准号:
    ARC : DP0210021
  • 财政年份:
    2002
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Discovery Projects

相似海外基金

Unseen Architectures: Revealing Low Mass Planets on Long Period Orbits
看不见的结构:揭示长周期轨道上的低质量行星
  • 批准号:
    2307467
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
Analysis of gradient dynamical systems with noncompact orbits by profile decomposition
轮廓分解分析非紧轨道梯度动力系统
  • 批准号:
    23K03166
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The research on the stability of the density functions for the existence probability of orbits
轨道存在概率密度函数的稳定性研究
  • 批准号:
    23K03185
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
  • 批准号:
    23K03913
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Abelian Varieties, Hecke Orbits, and Specialization
阿贝尔簇、赫克轨道和特化
  • 批准号:
    2337467
  • 财政年份:
    2023
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Standard Grant
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
  • 批准号:
    RGPIN-2019-06847
  • 财政年份:
    2022
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous Guidance, Navigation, and Control of Spacecraft Formation Flying on Highly Elliptical Orbits in the Presence of Gravitational, Third-Body, Drag and Solar Radiation Pressure Perturbations
在存在引力、第三体、阻力和太阳辐射压力扰动的情况下,在高椭圆轨道上飞行的航天器编队的自主制导、导航和控制
  • 批准号:
    570065-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Active Removal and Situational Awareness of Space Debris in Low Earth Orbits
近地轨道空间碎片的主动清除和态势感知
  • 批准号:
    RGPIN-2019-04359
  • 财政年份:
    2022
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Discovery Grants Program - Individual
The geometry of orbits of noncommutative Hermann actions
非交换赫尔曼作用的轨道几何
  • 批准号:
    22K03285
  • 财政年份:
    2022
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Orbit Design and Control for Non-Heliocentric Small-Body Missions
非日心小天体任务的轨道设计与控制
  • 批准号:
    22K14424
  • 财政年份:
    2022
  • 资助金额:
    $ 18.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了