New development of topological recursion obtained from period integrals

周期积分拓扑递归的新发展

基本信息

  • 批准号:
    17K05234
  • 负责人:
  • 金额:
    $ 1.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2017
  • 资助国家:
    日本
  • 起止时间:
    2017-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear O(3) sigma model in discrete complex analysis
离散复分析中的非线性 O(3) sigma 模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoya Ando;田所勇樹
  • 通讯作者:
    田所勇樹
Pointed harmonic volume and its relation to the extended Johnson homomorphism
尖调和体积及其与扩展约翰逊同态的关系
  • DOI:
    10.1142/s1793525319500407
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Sano Yuji;Takeyoshi Kogiso;Yuji Sano;Yuji Sano;Takeyoshi Kogiso;Yuji Sano;Takeyoshi Kogiso;小木曽岳義;Yuji Sano;Yuji Sano;小木曽岳義;Yuji Sano;Yuuki Tadokoro
  • 通讯作者:
    Yuuki Tadokoro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tadokoro Yuuki其他文献

Tadokoro Yuuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tadokoro Yuuki', 18)}}的其他基金

The analysis for the moduli space of Riemann surfaces using the discrete harmonic volume
使用离散调和体积分析黎曼曲面的模空间
  • 批准号:
    25800053
  • 财政年份:
    2013
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似国自然基金

三维流形的L-space猜想和左可序性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维流形的L-space猜想和左可序性
  • 批准号:
    12201200
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
高维space-filling问题及其相关问题
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高维space-filling问题及其相关问题
  • 批准号:
    12101514
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
  • 批准号:
    11975075
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Studentship
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Cooperative Agreement
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Fellowship Award
正則アノマリー方程式とモジュライ空間の幾何学
正则异常方程与模空间几何
  • 批准号:
    24K06743
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了