Applications of Alexander polynomial

亚历山大多项式的应用

基本信息

  • 批准号:
    17K05246
  • 负责人:
  • 金额:
    $ 2.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2017
  • 资助国家:
    日本
  • 起止时间:
    2017-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reidemeister torsion の利用法1,2
如何使用雷德迈斯特扭转1,2
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teruhisa Kadokami;Noriko Maruyama;Tsuyoshi Sakai;田中心;村上 斉;門上晃久;Hitoshi Murakami;Teruhisa Kadokami;Hitoshi Murakami;門上晃久
  • 通讯作者:
    門上晃久
Seifert surgery on knots via Reidemeister torsion and Casson-Walker invariant III
通过 Reidemeister 扭转和 Casson-Walker 不变量 III 对结进行 Seifert 手术
  • DOI:
    10.1016/j.topol.2018.03.034
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Teruhisa Kadokami;Noriko Maruyama;Tsuyoshi Sakai
  • 通讯作者:
    Tsuyoshi Sakai
Geometric study of virtual knot theory
虚拟结理论的几何研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teruhisa Kadokami;Noriko Maruyama;Tsuyoshi Sakai;田中心;村上 斉;門上晃久
  • 通讯作者:
    門上晃久
Knot theory in 3-manifold via virtual knot theory
通过虚拟结理论的 3 流形结理论
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teruhisa Kadokami;Noriko Maruyama;Tsuyoshi Sakai;田中心;村上 斉;門上晃久;Hitoshi Murakami;Teruhisa Kadokami
  • 通讯作者:
    Teruhisa Kadokami
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kadokami Teruhisa其他文献

The Ma-Qiu index and the Nakanishi index for a fibered knot are equal, and ω-solvability
纤维结的 Ma-Qiu 指数和 Nakanishi 指数相等,并且 ω-可解性
対称空間の一般化と対蹠集合
对称空间和对映集的推广
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kodani Hisatoshi;Terashima Yuji;Kadokami Teruhisa;酒井 高司
  • 通讯作者:
    酒井 高司

Kadokami Teruhisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A Polytopal View of Classical Polynomials
经典多项式的多面观
  • 批准号:
    2348676
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
GRASP Conic relaxations: scalable and accurate global optimization beyond polynomials
掌握圆锥松弛:超越多项式的可扩展且准确的全局优化
  • 批准号:
    EP/X032051/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Research Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Braids, Surfaces, and Polynomials
辫子、曲面和多项式
  • 批准号:
    2417920
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Random structures in high dimensions: Matrices, polynomials and point processes
高维随机结构:矩阵、多项式和点过程
  • 批准号:
    2246624
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
  • 批准号:
    23K03126
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Practical operational use of higher order polynomials in reducing the linearity errors of nanopositioning stages
高阶多项式在减少纳米定位台线性误差方面的实际操作使用
  • 批准号:
    10039395
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Collaborative R&D
Characteristic polynomials for symmetric forms
对称形式的特征多项式
  • 批准号:
    EP/W019620/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Research Grant
Fast Algorithms and Libraries for Polynomials.
多项式的快速算法和库。
  • 批准号:
    RGPIN-2019-04441
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorical properties of special symmetic polynomials: results and conjectures
特殊对称多项式的组合性质:结果和猜想
  • 批准号:
    575062-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了