Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
基本信息
- 批准号:10659772
- 负责人:
- 金额:$ 40.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAffectAlginatesArchitectureBathingBiomimeticsBlood VesselsCartilageCell CommunicationCellsChemicalsClinicalCommunitiesComplexDefectDegenerative polyarthritisEndothelial CellsEngineeringEvaluationFaceFibrocartilagesFunctional RegenerationGelGeometryGrowth FactorHealthHumanHydrogelsImmuneIndividualInferiorInflammatoryKneeLiquid substanceLocationMaintenanceMechanicsMesenchymal Stem CellsModelingModificationMovementOperative Surgical ProceduresOrthopedicsOryctolagus cuniculusPatientsPersonsPhasePhenotypePhysical condensationPositioning AttributePrintingProceduresPropertyReactionResearch PersonnelResolutionRoleShapesSolidStructureTechniquesTechnologyTherapeuticThickThinnessTissue EngineeringTissue constructsTissuesVascularizationbioinkbioprintingbioscaffoldbonebone repaircartilage repaircartilaginousdesignendothelial stem cellhealinghuman stem cellsimprovedin vivoinnovationnovelosteochondral tissueosteogenicparticlephysical propertyrepairedscaffoldspatiotemporalstandard of carestem cellsthree dimensional structuretissue injurytissue regeneration
项目摘要
Abstract
Osteochondral defects of the knee are common worldwide, yet there are few viable options for patients with
damaged osteochondral tissue as current treatments do not consistently regenerate functional tissue. The
standard of care for osteochondral defect repair is arthroscopic microfracture surgery, but this procedure often
results in formation of mechanically inferior fibrocartilage formation. To overcome limitations of this and other
surgical procedures, tissue engineering strategies, such as cell-laden biomaterial scaffolds, are promising
alternative approaches to treat these defects. However, scaffold-based strategies face several challenges, such
as interference with critical cell-cell interactions, potential immune and/or inflammatory reaction to the scaffold
and its degradation byproducts, and unsynchronized scaffold degradation rate with that of new tissue formation.
New cellular condensation strategies without a scaffold address these issues, however, it is still difficult to
precisely control the architecture of the engineered tissues to mimic the sophisticated three-dimensional (3D)
structure and organization of natural osteochondral tissues and their structure-derived functions. Recently, 3D
bioprinting has been applied in tissue engineering with the potential to create complicated, high-resolution 3D
structures. In addition, we have engineered the first technology capable of 3D printing a cell-only bioink and
maintaining the printed structure, which is necessary to form cell condensations. The hypothesis of this proposal
is that cellular condensation-based prevascularized osteochondral tissue constructs of precisely defined
geometries can be directly assembled with human stem cells and endothelial cells via 3D bioprinting into a
photocurable liquid-like solid, shear-thinning and rapid self-healing microgel slurry with spatially controlled
presentation of tissue specific growth factors. Microgel photocrosslinking after printing will provide temporary
mechanical stability for the printed constructs during culture to permit cellular condensation formation. This cell-
only bioprinting strategy will be implemented to print seamlessly continuous two-phase osteochondral tissue
constructs with a prevascularized bone phase and a cartilage phase. Specifically, this proposal aims to (1)
determine the role of microgel properties on the resolution and fidelity of the cell-only 3D printed constructs, (2)
engineer prevascularized osteochondral constructs with individual cell-only bioinks by spatiotemporally
controlled delivery of vasculogenic, osteogenic and chondrogenic growth factors, and (3) determine the clinical
potential of the 3D printed prevascularized osteochondral constructs by evaluation of new osteochondral tissue
formation and integration with the host vascular networks and bone and cartilage repair in a full-thickness
osteochondral rabbit defect model. This platform strategy has the potential to greatly enhance the lives of those
suffering from osteochondral defects and may enable the engineering of other complex functional tissues in the
body.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eben Alsberg其他文献
Eben Alsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eben Alsberg', 18)}}的其他基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 40.36万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10570918 - 财政年份:2022
- 资助金额:
$ 40.36万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10354662 - 财政年份:2022
- 资助金额:
$ 40.36万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9923657 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9899066 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9732428 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
9728716 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
10263140 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Opposing RNAi molecule gradient constructs to repair osteochondral defects
相反的RNAi分子梯度构建修复骨软骨缺损
- 批准号:
9265388 - 财政年份:2016
- 资助金额:
$ 40.36万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9069425 - 财政年份:2015
- 资助金额:
$ 40.36万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 40.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 40.36万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 40.36万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 40.36万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 40.36万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 40.36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant