Stability conditions: their topology and applications
稳定性条件:拓扑和应用
基本信息
- 批准号:DP240101084
- 负责人:
- 金额:$ 29.05万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2024
- 资助国家:澳大利亚
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to answer questions about the topology of the space of stability conditions, which has emerged as a central object in a number of different mathematical areas in the past two decades. The proposed work will have important consequences in representation theory, group theory, and algebraic geometry. The project shows that tools from previously unrelated areas, including discontinous differential equations and discrete dynamical systems, are crucial in the theory of stability conditions. Potential benefits include the resolution of outstanding conjectures in mathematics, the initiation of new connections between different areas of mathematics, and the introduction of machine learning techniques into mathematical research.
该项目旨在回答有关稳定性条件空间的拓扑结构的问题,在过去的二十年中,稳定性条件空间已经成为许多不同数学领域的中心对象。 拟议中的工作将产生重要的后果表示论,群论,代数几何。 该项目表明,以前不相关领域的工具,包括不连续微分方程和离散动力系统,在稳定性条件理论中至关重要。 潜在的好处包括解决数学中的突出问题,启动不同数学领域之间的新联系,以及将机器学习技术引入数学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Anthony Licata其他文献
Prof Anthony Licata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Anthony Licata', 18)}}的其他基金
Groups, piecewise linear representations, and linear 2-representations
群、分段线性表示和线性 2-表示
- 批准号:
FT180100069 - 财政年份:2019
- 资助金额:
$ 29.05万 - 项目类别:
ARC Future Fellowships
Braid groups and higher representation theory
辫子群和更高表示理论
- 批准号:
DP140103821 - 财政年份:2014
- 资助金额:
$ 29.05万 - 项目类别:
Discovery Projects
Higher representation theory
更高表示理论
- 批准号:
DE120102369 - 财政年份:2012
- 资助金额:
$ 29.05万 - 项目类别:
Discovery Early Career Researcher Award
相似国自然基金
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Dyadic Analysis of Unmet Social Needs Among Breast and Gynecologic Patients and Their Informal Caregivers
乳腺和妇科患者及其非正式护理人员未满足的社会需求的二元分析
- 批准号:
10901105 - 财政年份:2023
- 资助金额:
$ 29.05万 - 项目类别:
Dyadic Analysis of Unmet Social Needs Among Breast and Gynecologic Patients and Their Informal Caregivers
乳腺和妇科患者及其非正式护理人员未满足的社会需求的二元分析
- 批准号:
10587457 - 财政年份:2023
- 资助金额:
$ 29.05万 - 项目类别:
The cultivation conditions and the mucus properties of tororo aoi (Abelmoschus manihot) and their database construction which are aiming to a sustainable development of Japanese paper, washi
黄秋葵的栽培条件、粘液特性及其数据库建设,旨在实现日本纸、和纸的可持续发展
- 批准号:
23K00948 - 财政年份:2023
- 资助金额:
$ 29.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial and Temporal Distribution of Dust Events across the United States over Twenty (20) Years, Insight into Their Meteorological Causes and Conditions
二十 (20) 年来美国沙尘事件的时空分布,深入了解其气象原因和条件
- 批准号:
2235913 - 财政年份:2023
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
A next-generation support system and personalised therapy platform for individuals with neurological conditions, as well as their family/caregivers.
为神经系统疾病患者及其家人/护理人员提供下一代支持系统和个性化治疗平台。
- 批准号:
10045001 - 财政年份:2022
- 资助金额:
$ 29.05万 - 项目类别:
Grant for R&D
A qualitative longitudinal study on the illness experiences of UK students with long-term health conditions during their first year of transition to
对患有长期健康问题的英国学生在过渡到第一年期间的疾病经历进行定性纵向研究
- 批准号:
2756682 - 财政年份:2022
- 资助金额:
$ 29.05万 - 项目类别:
Studentship
Crystal chemistry of phmtoluminscent multi-metal complexes based on their elastic molecular frameworks under extreme pressure conditions
极压条件下基于弹性分子骨架的光致发光多金属配合物的晶体化学
- 批准号:
22K05147 - 财政年份:2022
- 资助金额:
$ 29.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the actual conditions of related operations and their composition for the systematization of renovation planning method utilizing the results of park management
分析相关作业的实际情况及其构成,利用公园管理成果实现改造规划方法的系统化
- 批准号:
22K05712 - 财政年份:2022
- 资助金额:
$ 29.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable systems/solitons, such as methods of their construction or boundary conditions
可积系统/孤子,例如其构造方法或边界条件
- 批准号:
2620748 - 财政年份:2021
- 资助金额:
$ 29.05万 - 项目类别:
Studentship
Management of Complex Medication Regimens among Older Adults with Alzheimer's Disease and Related Dementias and their Caregivers
患有阿尔茨海默病和相关痴呆症的老年人及其照顾者的复杂药物治疗方案的管理
- 批准号:
10544550 - 财政年份:2021
- 资助金额:
$ 29.05万 - 项目类别: