Structure-preserving methods for stochastic differential equations

随机微分方程的结构保持方法

基本信息

  • 批准号:
    17K18736
  • 负责人:
  • 金额:
    $ 3.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
  • 财政年份:
    2017
  • 资助国家:
    日本
  • 起止时间:
    2017-06-30 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrete Gauss, Green and Stokes laws on Voronoi meshes and structure-preserving methods
Voronoi 网格上的离散高斯定律、格林定律和斯托克斯定律以及结构保持方法
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyatake Yuto;Cohen David;Furihata Daisuke;Matsuo Takayasu;降籏 大介;降籏 大介;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata
  • 通讯作者:
    Daisuke Furihata
The Hyers?Ulam stability constant for Chebyshevian Bernstein operators
切比雪夫伯恩斯坦算子的 Hyers?Ulam 稳定性常数
Structure-preserving methods based on discrete Gauss, Green and Stokes laws on Voronoi meshes
基于 Voronoi 网格离散高斯、格林和斯托克斯定律的结构保持方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyatake Yuto;Cohen David;Furihata Daisuke;Matsuo Takayasu;降籏 大介;降籏 大介;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata
  • 通讯作者:
    Daisuke Furihata
Discrete Gauss, Green and Stokes laws with difference operators on Voronoi meshes and applications
Voronoi 网格上具有差分算子的离散高斯定律、格林定律和斯托克斯定律及其应用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyatake Yuto;Cohen David;Furihata Daisuke;Matsuo Takayasu;降籏 大介;降籏 大介;Daisuke Furihata;Daisuke Furihata
  • 通讯作者:
    Daisuke Furihata
A method to design structure-preserving schemes for PDEs on Voronoi cells
一种在 Voronoi 单元上设计偏微分方程结构保持方案的方法
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyatake Yuto;Cohen David;Furihata Daisuke;Matsuo Takayasu;降籏 大介;降籏 大介;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata;Daisuke Furihata
  • 通讯作者:
    Daisuke Furihata
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Furihata Daisuke其他文献

微分作用素の固有値の上下界評価:Kato's boundsへの再検討
微分算子特征值上下界的评估:加藤界限的重新审视
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Okumura Makoto;Fukao Takeshi;Furihata Daisuke;Yoshikawa Shuji;劉 雪峰
  • 通讯作者:
    劉 雪峰
斥力的連立シュレディンガー方程式の偶対称基底状態
薛定谔方程排斥系统的偶对称基态
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Okumura Makoto;Fukao Takeshi;Furihata Daisuke;Yoshikawa Shuji;佐藤 洋平
  • 通讯作者:
    佐藤 洋平
Energy estimates and well-posedness for the cubic nonlinear Schrödinger equations in dimensions 1 and 2
1 维和 2 维三次非线性薛定谔方程的能量估计和适定性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyatake Yuto;Cohen David;Furihata Daisuke;Matsuo Takayasu;高岡秀夫;高岡秀夫;高岡秀夫
  • 通讯作者:
    高岡秀夫
Almost sure global wellposedness for the periodic derivative NLS
周期导数 NLS 几乎可以确定全局适足性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyatake Yuto;Cohen David;Furihata Daisuke;Matsuo Takayasu;高岡秀夫;高岡秀夫
  • 通讯作者:
    高岡秀夫
On the concavity of the arithmetic volumes (poster)
论算术卷的凹性(海报)
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyatake Yuto;Cohen David;Furihata Daisuke;Matsuo Takayasu;生駒英晃
  • 通讯作者:
    生駒英晃

Furihata Daisuke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Furihata Daisuke', 18)}}的其他基金

Structure-preserving numerical method for partial differential equations based on Voronoi diagram
基于Voronoi图的偏微分方程保结构数值方法
  • 批准号:
    26610038
  • 财政年份:
    2014
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Construction of fundamental theory of difference method based on discrete function analysis and variational theory
基于离散函数分析和变分理论的差分法基本理论构建
  • 批准号:
    25287030
  • 财政年份:
    2013
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

力学的境界条件下の問題に対する、任意多角形格子上の構造保存数値解法の構成
针对机械边界条件下的问题,在任意多边形网格上构造保持结构的数值解
  • 批准号:
    23K13009
  • 财政年份:
    2023
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
微分代数方程式に対する高速な構造保存数値解法の構築
微分代数方程快速保结构数值求解方法的构建
  • 批准号:
    22K13955
  • 财政年份:
    2022
  • 资助金额:
    $ 3.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了