Protecting a single solid-state spin from a spin bath in diamond for quantum sensing
保护单个固态自旋免受金刚石自旋浴的影响,用于量子传感
基本信息
- 批准号:18F18023
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2018
- 资助国家:日本
- 起止时间:2018-04-25 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In FY2018, my research is mainly focused on the following two topics: (1) Majorana corner states in a 2D magnetic topological insulator on a high-temperature superconductor. A d-dimensional second-order topological superconductor (TSC) is characterized by topologically protected gapless (d-2) dimensional states with the usual gapped (d - 1) boundaries. In this work, we studied a second-order TSC with a 2D magnetic topological insulator proximity coupled to a high-temperature superconductor, where Majorana bound states (MBSs) are localized at the corners of a square sample with gapped edge modes. A detailed analysis, based on edge theory, revealed the origin of the existence of MBSs at the corners of the 2D sample, which results from the sign change of the Dirac mass emerging at the intersection of any two adjacent edges due to pairing symmetry. (2) Second-order topological phases in non-Hermitian systems. A d-dimensional second-order topological insulator (SOTI) can host topologically protected (d-2)-dimensional gapless boundary modes. In this work, we showed that a 2D non-Hermitian SOTI can host zero-energy modes localized only at one corner. A 3D non-Hermitian SOTI is shown to support second-order boundary modes localized not along hinges but anomalously at a corner. The usual bulk-corner (hinge) correspondence in the second-order 2D (3D) non-Hermitian system breaks down.
2018财年,我的研究主要集中在以下两个主题:(1)高温超导体上二维磁性拓扑绝缘体中的马约拉纳角态。d维二阶拓扑超导体(TSC)的特征是具有通常的带隙(d - 1)边界的拓扑保护的无隙(d-2)维态。在这项工作中,我们研究了一个二阶TSC与二维磁拓扑绝缘体接近耦合到高温超导体,其中马约拉纳束缚态(MBSs)是本地化的角落的正方形样品与带隙的边缘模式。基于边缘理论的详细分析揭示了2D样品角落处存在MBSs的起源,这是由于配对对称性导致任何两个相邻边缘相交处出现的狄拉克质量的符号变化。(2)非厄米特系统中的二阶拓扑相。d维二阶拓扑绝缘体(SOTI)可以具有拓扑保护的(d-2)维无隙边界模。在这项工作中,我们表明,一个二维非厄米SOTI可以主机零能量模式仅局限于一个角落。一个3D非厄米SOTI示出支持本地化的二阶边界模式,而不是沿着铰链,但在一个角落里。在二阶2D(3D)非厄米系统中,通常的体角(铰链)对应被打破。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broad-band negative refraction via simultaneous multi-electron transitions
- DOI:10.1088/2399-6528/aafe4b
- 发表时间:2018-07
- 期刊:
- 影响因子:1.2
- 作者:Jing-jing Cheng;Y. Chu;Tao Liu;Jie-Xing Zhao;Fuguo Deng;Q. Ai;F. Nori
- 通讯作者:Jing-jing Cheng;Y. Chu;Tao Liu;Jie-Xing Zhao;Fuguo Deng;Q. Ai;F. Nori
Second-Order Topological Phases in Non-Hermitian Systems
- DOI:10.1103/physrevlett.122.076801
- 发表时间:2019-02-20
- 期刊:
- 影响因子:8.6
- 作者:Liu, Tao;Zhang, Yu-Ran;Nori, Franco
- 通讯作者:Nori, Franco
Majorana corner states in a two-dimensional magnetic topological insulator on a high-temperature superconductor
- DOI:10.1103/physrevb.98.245413
- 发表时间:2018-06
- 期刊:
- 影响因子:3.7
- 作者:Tao Liu;J. J. He-J.;F. Nori
- 通讯作者:Tao Liu;J. J. He-J.;F. Nori
Topological band theory for non-Hermitian systems from the Dirac equation
来自狄拉克方程的非厄米系统的拓扑能带理论
- DOI:10.1103/physrevb.100.054105
- 发表时间:2019-08-15
- 期刊:
- 影响因子:3.7
- 作者:Ge, Zi-Yong;Zhang, Yu-Ran;Nori, Franco
- 通讯作者:Nori, Franco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NORI FRANCO其他文献
NORI FRANCO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NORI FRANCO', 18)}}的其他基金
Topological nanophotonic metamaterials for robust integrated devices
用于稳健集成器件的拓扑纳米光子超材料
- 批准号:
23KF0085 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Novel optomechanical entanglement
新型光机纠缠
- 批准号:
23KF0087 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Thermodynamics of non-Markovian open quantum systems
非马尔可夫开放量子系统的热力学
- 批准号:
23KF0293 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Novel photon blockade effects with exceptional points
新颖的光子封锁效果,亮点十足
- 批准号:
22KF0404 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Accelerated quantum control methods
加速量子控制方法
- 批准号:
19F19028 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Entanglement Detection and Characterization of Topological States
拓扑态的纠缠检测和表征
- 批准号:
19F19326 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New regimes of quantum optics in giant artificial atoms and hybrid systems
巨型人造原子和混合系统中量子光学的新机制
- 批准号:
17F15750 - 财政年份:2017
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantum langevin equation method in non-Markovian dynamics
非马尔可夫动力学中的量子朗之万方程方法
- 批准号:
17F17821 - 财政年份:2017
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Time evolution of topological magneto-optics and superconducting qubits
拓扑磁光和超导量子位的时间演化
- 批准号:
16F16027 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ハイブリッドシステムにおける量子光学の新体制に関する研究
混合系统中量子光学新机制的研究
- 批准号:
15F15750 - 财政年份:2015
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows