Entanglement Detection and Characterization of Topological States

拓扑态的纠缠检测和表征

基本信息

  • 批准号:
    19F19326
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-11-08 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

We studied several emergent phenomena in quantum many-body systems from the perspective of quantum information. We theoretically studied topological phases in perturbed toric codes using quantum Fisher information (QFI). We showed thermalization and disorder-assisted stabilization of topological order after a quantum quench. We studied the 2D toric code at finite temperatures and showed that topological order cannot survive. Using a 19-qubit superconducting (SC) circuit, we generated and characterized multi-qubit entangled states. With 10 qubits, we measured the nonlinear squeezing parameter that had never been measured before. With all 19 qubits, we observed a metrological gain of 9.89 dB over the standard quantum limit, indicating a high level of entanglement for quantum-enhanced estimation sensitivity. We employed a 1D 12-qubit SC circuit to identify regimes of strong and weak thermalization with different states. Using a ladder-type SC circuit, we simulated both the XX-ladder and XX-chain models. We signaled thermalization and information scrambling in the XX ladder, which are absent in the XX chain. We realized a deterministic one-way C-not gate and one-way X rotations on IBM’s quantum-computing platform. We used multipartite entanglement to detect dynamical phase transitions using 16 SC qubits. We demonstrated the engineering of multiple dissipative channels by controlling adjacent nuclear spins of a NV center and observed the QFI’s flows to and from the environment.
从量子信息的角度研究了量子多体系统中的几种涌现现象。利用量子Fisher信息理论研究了扰动环面码的拓扑相位。我们证明了量子猝灭后拓扑有序的热化和无序辅助稳定。我们研究了有限温度下的二维复曲面代码,并表明拓扑顺序不能生存。利用一个19量子比特的超导电路,制备了多量子比特纠缠态,并对其进行了表征。用10个量子比特,我们测量了以前从未测量过的非线性压缩参数。对于所有19个量子比特,我们观察到超过标准量子极限的9.89 dB的量子增益,这表明量子增强估计灵敏度的高水平纠缠。我们采用了一个一维12量子位SC电路来识别不同状态的强和弱热化机制。使用梯形SC电路,我们模拟了XX-阶梯和XX-链模型。我们在XX阶梯中发出热化和信息扰乱的信号,这在XX链中是不存在的。我们在IBM的量子计算平台上实现了确定性的单向C-not门和单向X旋转。我们使用多体纠缠来检测使用16 SC量子比特的动力学相变。我们通过控制NV中心的相邻核自旋展示了多个耗散通道的工程,并观察了QFI进出环境的流动。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deterministic one-way logic gates on a cloud quantum computer
  • DOI:
    10.1103/physreva.105.042610
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhi-Peng Yang;Huan-Yu Ku;A. Baishya;Yu-Ran Zhang;A. F. Kockum;Yueh-Nan Chen;Fu-li Li;J. Tsai;F. Nori
  • 通讯作者:
    Zhi-Peng Yang;Huan-Yu Ku;A. Baishya;Yu-Ran Zhang;A. F. Kockum;Yueh-Nan Chen;Fu-li Li;J. Tsai;F. Nori
Observing nonlinear spin squeezing and entanglement of non-Gaussian states with interconnected superconducting qubits
观察具有互连超导量子位的非高斯态的非线性自旋挤压和纠缠
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shao Lian-He;Zhang Yu-Ran;Luo Yu;Xi Zhengjun;Fei Shao-Ming;Yu-Ran Zhang
  • 通讯作者:
    Yu-Ran Zhang
Discrete time crystal in a driven-dissipative Bose-Hubbard model with two-photon processes
具有双光子过程的驱动耗散 Bose-Hubbard 模型中的离散时间晶体
  • DOI:
    10.1103/physreva.105.013710
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liu Tong;Zhang Yu-Ran;Xu Kai;Cui Jian;Fan Heng
  • 通讯作者:
    Fan Heng
Quantifying quantum non-Markovianity based on quantum coherence via skew information
通过偏斜信息基于量子相干性量化量子非马尔可夫性
  • DOI:
    10.1088/1612-202x/ab5fe3
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Shao Lian-He;Zhang Yu-Ran;Luo Yu;Xi Zhengjun;Fei Shao-Ming
  • 通讯作者:
    Fei Shao-Ming
Observation of Thermalization and Information Scrambling in a Superconducting Quantum Processor
超导量子处理器中热化和信息加扰的观察
  • DOI:
    10.1103/physrevlett.128.160502
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Qingling Zhu;Zheng-Hang Sun;Ming Gong;Fusheng Chen;Yu-Ran Zhang;Yulin Wu;Yangsen Ye;Chen Zha;Shaowei Li;Shaojun Guo;Haoran Qian;He-Liang Huang;Jiale Yu;Hui Deng;Hao Rong;Jin Lin;Yu Xu;Lihua Sun;Cheng Guo;Na Li;Futian Liang;Cheng-Zhi Peng;Heng Fan;Xiaobo Z
  • 通讯作者:
    Xiaobo Z
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NORI FRANCO其他文献

NORI FRANCO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NORI FRANCO', 18)}}的其他基金

Topological nanophotonic metamaterials for robust integrated devices
用于稳健集成器件的拓扑纳米光子超材料
  • 批准号:
    23KF0085
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Novel optomechanical entanglement
新型光机纠缠
  • 批准号:
    23KF0087
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Thermodynamics of non-Markovian open quantum systems
非马尔可夫开放量子系统的热力学
  • 批准号:
    23KF0293
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Novel photon blockade effects with exceptional points
新颖的光子封锁效果,亮点十足
  • 批准号:
    22KF0404
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Accelerated quantum control methods
加速量子控制方法
  • 批准号:
    19F19028
  • 财政年份:
    2019
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Protecting a single solid-state spin from a spin bath in diamond for quantum sensing
保护单个固态自旋免受金刚石自旋浴的影响,用于量子传感
  • 批准号:
    18F18023
  • 财政年份:
    2018
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
New regimes of quantum optics in giant artificial atoms and hybrid systems
巨型人造原子和混合系统中量子光学的新机制
  • 批准号:
    17F15750
  • 财政年份:
    2017
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum langevin equation method in non-Markovian dynamics
非马尔可夫动力学中的量子朗之万方程方法
  • 批准号:
    17F17821
  • 财政年份:
    2017
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Time evolution of topological magneto-optics and superconducting qubits
拓扑磁光和超导量子位的时间演化
  • 批准号:
    16F16027
  • 财政年份:
    2016
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ハイブリッドシステムにおける量子光学の新体制に関する研究
混合系统中量子光学新机制的研究
  • 批准号:
    15F15750
  • 财政年份:
    2015
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Continuing Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Standard Grant
The source of quantum advantages: a unified approach to quantum resources of states and processes
量子优势的来源:状态和过程量子资源的统一方法
  • 批准号:
    22KF0067
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum entanglement with atoms: from individual pairs to many-body systems
原子的量子纠缠:从个体对到多体系统
  • 批准号:
    FT220100670
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了