Fabrication of Ultra-Strong Glasses via Spatiotemporal Dissipative Structure of Singular Stress Field

利用奇异应力场时空耗散结构制造超强玻璃

基本信息

项目摘要

ガラスの理論強度は鋼鉄やエンジニアリングプラスチックなどの他の高強度とされる材料と比べても高く、理論的には高強度である。しかし、実用に供されるガラスの強度はこれより2桁以上低い。この原因は、ガラスが引っ張り応力下で均質な弾性体として振る舞い、ひとたび亀裂が発生してしまうと亀裂先端に応力が集中し、そしてその進展を止める機構が働かないためである。発生応力を低減したり応力集中を抑制すれば、ガラス本来の高い強度に近づけられると期待される。申請研究では脆さの原因である特異応力場を時空間的に分散させ、応力集中による割れが起きにくいガラスの実現を目指す。亀裂先端への応力集中で生じる巨大な応力場を時空間的に散逸させるための新しい高強度ガラスのアプローチを提案し、超高強度ガラスを実現することを目的とする。本年度は、ゾルゲル法を用いての薄膜適応を検討した。従来粉末の焼成であったため粒子サイズや種類の制御性が低かったが、ゾルゲル法などの液相法を適応することでもガラス膜の破壊靭性を高められることを実証した。Ag分散SiO2ガラス膜を形成することに成功し、インデンテーション破壊試験により破壊靭性の向上が見られた。これにより様々な物性、形態の粒子分散で試験を行うための準備ができており、今後様々な組み合わせで材料合成と特性評価を行っていくことができる。また、昨年度に引き続きスパークプラズマ焼結法でのナノ粒子分散ガラス合成も行った。これまでは液相でのコーティングを行っていたが、本年度はスパッタを用いる手法も開発し、より広範の適応可能性がある。また、ナノスクラッチ試験なども行い、耐スクラッチ性などについても検討を行った。
The theoretical strength of steel is higher than that of steel, and the theoretical strength is higher than that of steel. The intensity of the power supply is higher than 2 meters. The reason for this is that under the stress of tension, the homogeneous nature of the body is in the middle of the vibration, and the crack occurs at the tip of the crack. The stress is concentrated, and the progress is stopped. The reduction of the generation force, the concentration of the generation force, the reduction of the generation force, the reduction, the reduction of the generation force, the reduction of the generation force, the reduction Application for research on the causes of vulnerability, specific force field, time and space dispersion, force concentration, separation and implementation of the target A large force field is generated at the tip of the crack, and a new high intensity force field is generated at the tip of the crack. This year, the film adaptation process was discussed. The preparation of the powder and the control of the particle type are low, and the liquid phase method is suitable for the preparation of the powder and the fracture toughness of the film is high. Ag dispersion SiO2 film formation is successful, and its toughness is improved. For example, the physical properties, morphology, particle dispersion, test preparation, future composition, material synthesis, and property evaluation. In the past year, the particle dispersion and synthesis methods were introduced. This year, the number of employees in the company increased by 1.5 percent, and the number of employees in the company increased by 1.5 percent.また、ナノスクラッチ试験なども行い、耐スクラッチ性などについても検讨を行った。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fracture toughness enhancement via sub‐micro silver‐precipitation in silica glass fabricated by spark plasma sintering
通过放电等离子烧结制备的石英玻璃中亚微米银沉淀增强断裂韧性
Microstructure and improved fracture toughness of borosilicate glass reinforced by 1 vol% Ag nanoparticles
微观结构%20and%20改善%20断裂%20韧性%20of%20硼硅酸盐%20玻璃%20增强%20by%201%20vol%%20Ag%20纳米颗粒
  • DOI:
    10.1016/j.ceramint.2022.07.044
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Liu Lei;Shinozaki Kenji
  • 通讯作者:
    Shinozaki Kenji
Fabrication of Ti<sub>3</sub>C<sub>2</sub> MXene/borosilicate glass with enhanced fracture toughness
断裂韧性增强的Ti<sub>3</sub>C<sub>2</sub> MXene/硼硅酸盐玻璃的制备
Ti3C2 MXene分散によるホウケイ酸ガラスの破壊靭性向上
Ti3C2 MXene 分散体提高硼硅酸盐玻璃的断裂韧性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    篠崎健二;Lei Liu
  • 通讯作者:
    Lei Liu
Thermal conductivity and mechanical properties of soda-lime glass with interfacially connected Au layer fabricated via sputtering and spark plasma sintering
  • DOI:
    10.1080/21870764.2022.2068286
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Lei Liu;K. Shinozaki
  • 通讯作者:
    Lei Liu;K. Shinozaki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

篠崎 健二其他文献

非晶質ナトリウムスズケイ酸塩におけるスズナノ粒子の形成と電気化学特性
无定形硅酸钠锡中锡纳米粒子的形成及其电化学性能
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤 史隆;本間 剛;小松 高行;篠崎 健二;伊奈 稔哲;山内 英郎
  • 通讯作者:
    山内 英郎
非晶質スズケイ酸塩におけるスズナノ粒子の形成
无定形硅酸锡中锡纳米颗粒的形成
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤 史隆;本間 剛;小松 高行;篠崎 健二;伊奈 稔哲;山内 英郎
  • 通讯作者:
    山内 英郎
リン酸鉄ナトリウムガラスのナトリウム電池用正極としての機能性
磷酸铁钠玻璃作为钠电池正极的功能
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    仲田 諭史;本間 剛;篠崎 健二;小松 高行
  • 通讯作者:
    小松 高行
フツホウ酸ガラスの構造とNaYF4ナノ結晶化機構
氟硼酸盐玻璃结构及NaYF4纳米晶化机理
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    篠崎 健二;石井 良樹
  • 通讯作者:
    石井 良樹
スズナノ粒子分散非晶質ケイ酸塩の合成とナトリウムイオンの脱挿入
锡纳米颗粒分散的无定形硅酸盐的合成及钠离子的脱嵌
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤 史隆;本間 剛;小松 高行;篠崎 健二;伊奈 稔哲;山内 英郎
  • 通讯作者:
    山内 英郎

篠崎 健二的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('篠崎 健二', 18)}}的其他基金

急冷過程でのガラスナノ結晶化を実現するガラス構造設計とそれを用いたデバイス創成
在快速冷却过程中实现玻璃纳米晶化的玻璃结构设计以及利用它创建的器件
  • 批准号:
    23K23056
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Glass structure design for glass nanocrystallization during quenching process and device fabrication
淬火过程中玻璃纳米晶化的玻璃结构设计和器件制造
  • 批准号:
    22H01788
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

脳内デリバリーを可能にするナノ粒子設計指針の確立
建立能够实现脑内递送的纳米颗粒设计指南
  • 批准号:
    23K23181
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ADP封入ナノ粒子を血小板好中球複合体に作用させ凝固障害と炎症病態を制御する
ADP 封装的纳米颗粒作用于血小板-中性粒细胞复合物以控制凝血障碍和炎症状况
  • 批准号:
    23K24438
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
過渡的熱整流作用を有する透明ナノ粒子の還元接合現象の超短時間観測と局所加熱応用
瞬态热整流效应和局部加热应用透明纳米粒子还原键合现象的超短时观察
  • 批准号:
    23K26011
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
磁性ナノ粒子の磁化応答を介した腫瘍環境非侵襲可視化法の創成とがん診断治療への応用
通过磁性纳米粒子的磁化响应创建肿瘤环境的非侵入性可视化方法及其在癌症诊断和治疗中的应用
  • 批准号:
    23K26114
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
脆弱な世代に対する人工ナノ粒子の健康影響評価と安全性確保に向けて
评估人造纳米粒子对弱势群体的健康影响并确保他们的安全
  • 批准号:
    23K27342
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
金ナノ粒子を核としたアルファ線による新しい悪性腫瘍治療法の開発
开发以金纳米颗粒为核心的α射线治疗恶性肿瘤新方法
  • 批准号:
    23K27456
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ミセル反応場で合成する希土類配位ナノ粒子の構造制御と光機能材料化
胶束反应场合成稀土配位纳米粒子的结构控制及光功能材料的开发
  • 批准号:
    23K23420
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
金属ナノ粒子に汚染された下水処理水灌漑による水稲栽培と温室効果ガス排出への影響
使用受金属纳米粒子污染的处理污水进行灌溉对水稻种植和温室气体排放的影响
  • 批准号:
    24KF0010
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
太陽熱淡水化用ナノ粒子装飾布および熱電モジュールアレイの開発
用于太阳能海水淡化的纳米粒子装饰织物和热电模块阵列的开发
  • 批准号:
    24KF0016
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
放射線を用いたカーボン担持金属酸化物ナノ粒子触媒の合成
辐射合成碳载金属氧化物纳米颗粒催化剂
  • 批准号:
    24KJ1592
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了