多変数モジュラー形式の合同、p進的性質の研究
多元模形式的同余性和p进性质研究
基本信息
- 批准号:22K03259
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
当該年度は、主にSiegelモジュラー形式の場合に定義される「法p特異モジュラー形式」の具体的構造の解明および、そのp進Siegel Eisenstein級数への応用を試み、いくらか成果が得られた。具体的には以下の通りである。(1) 前研究期間の最終年度の終盤において、かなり一般の場合に、レベルNの法p特異モジュラー形式は、レベル「pベキ」×Nの形のテータ級数の一次結合と法pで合同になることを示した。当該年度は、主に上記結果の法pベキへの拡張を目標として始動し、実際にこの拡張が得られた。(2) 一般次数の場合のレベル1のSiegel Eisenstein級数のp進極限として定義されるp進Siegel Eisenstein級数について考える。上記(1)の理論を用いて、このp進Siegel Eisenstein級数は、レベルpのジーナステータ級数の一次結合で表されることを示した。さらに、このp進Siegel Eisenstein級数のU(p)作用素に関する固有値が1であることを示した。Siegelの主定理により、このp進Siegel Eisenstein級数が再びEisenstein級数の空間に属することが従う。U(p)固有値が1であることから、(重さが大きい場合には)どのEisenstein級数になるかが完全に特徴付けられる。尚、ジーナステータ級数との一致に関する結果は、重さが1や2の特別な場合は、長岡や桂田-長岡によって既に示されていた事実である。次数が特別な場合は、さらに多数の類似の結果が知られている。以上2件の成果は、いずれもSiegfried Boecherer氏との共同研究によるものである。
When this year, the main Siegel series form is defined, the concrete structure of the "law p special Siegel series form" is explained, and the application of the Siegel Eisenstein series is tested. Specific (1)At the end of the last year of the previous study period, the general situation, the method of N, the specific form of N, the first combination of N, the method of N, the first combination of N, the method of N. When the year is over, the main results are recorded, and the results are recorded at the beginning of the year. (2)The p-progressive limit of Siegel Eisenstein series in general cases is defined as the p-progressive Siegel Eisenstein series. The theory of (1) above is applied to the expression of Siegel Eisenstein series. The U(p) action of Siegel Eisenstein series is related to the intrinsic value of 1. Siegel's main theorem is the p-progression of Siegel Eisenstein series and the space of Eisenstein series. U(p) is inherently valued at 1 The results of the consistency of the number of classes are as follows: 1 and 2 in special cases, Nagaoka Katsuta-Nagaoka. The number of times is special, and most of the similar results are known. The above two achievements are included in Siegfried Boecherer's joint research.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
菊田 俊幸其他文献
菊田 俊幸的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
極小表現に基づくテータ級数の一般化
基于最小表示的 theta 级数的推广
- 批准号:
10874008 - 财政年份:1998
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Exploratory Research














{{item.name}}会员




