時間発展型積分微分方程式の変分解析

时间演化积分微分方程的变分分析

基本信息

  • 批准号:
    22K03395
  • 负责人:
  • 金额:
    $ 2.16万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

時間変数を含む放物型、あるいは、双曲型の偏微分方程式を関数空間上の曲線ととらえ、時間変化に伴い、関数空間上のエネルギー汎関数の値が最適に減少する曲線を見つける問題として定式化される。エネルギー汎関数は変分学で扱われる概念であり、そこには本来時間変数が含まれない。従って、これを時間発展問題に適用するためには、時間微分の構造を考慮する必要がある。その方法論としてイタリア学派によって構築された2つの方法が知られている。一方は最大勾配曲線(Curves of maximal slope)法[CMS法]であり、他方は離散モース流法(Discrete Morse flow)法[DMF法]である。前者のCMS法は、十分小さい範囲で連続的に変化する半径の閉球内でその都度エネルギー汎関数の最小化関数を求め、それらをつなぐことにより近似曲線を構成し、半径の上限を0に限りなく近づけることよって目的の解曲線を構成する方法である。この方法では、汎関数の勾配としてスロープという概念が導入され、これがノルム最小の勾配ベクトルと一致するという正則性条件が解曲線構成のための十分条件になる。後者のDMF法は、偏微分方程式の時間変数を離散化することにより再帰的に定義されるエネルギー汎関数族を考え、その都度得られるエネルギー最小化関数の族を用いて近似解を構成し、近似パラメータを0に限りなく近づけることにより近似解を構成する手法である。特に、単に弱解を構成する方法として用いられるだけでなく、近似極限移行の際に使われる近似パラメータに寄らない一様評価を近似解の族に対して得る点にその特徴がある。今年度は、DMF 法によってその弱解が構成された非局所方程式に対する、非負解の体積保存問題とCMS法による非局所方程式の弱解構成に取り組んだ。特に前者は論文として投稿中である。後者は研究初段階に位置づけられる。
The time variable number includes the matter type, the inverse, the hyperbolic partial differential equation, the curve on the relation space, the time variable number, the inverse, the relation space, the inverse, the relation number, the value, the optimum reduction, the curve, the problem, the formalization. The number of times the original number is included in the number of times. It is necessary to consider the structure of time derivative when the time derivative is applied. The methodology and methodology of the two schools of thought are discussed in detail. One side of the curve (Curves of maximum slope) method [CMS method], the other side of the Discrete The former CMS method is to find the minimum correlation number of the radius of the closed sphere, to construct the approximate curve, to construct the solution curve of the radius of the closed sphere, to construct the upper limit of the closed sphere. This method is based on the concept of matching the universal correlation number, introducing the minimum matching parameter and the regularity condition, and solving the very condition of curve composition. The latter method is used to discretize the time variation of the partial differential equation, and the method of constructing the approximate solution of the family of minimum correlation numbers is used to examine the family of minimum correlation numbers. A method for constructing a special, simple and weak solution is proposed. The characteristics of the approximate solution are obtained when the approximate limit is shifted. In this paper, DMF method is used to construct the weak solution of non-local equation, non-negative solution volume preservation problem and CMS method is used to construct the weak solution of non-local equation. In particular, the former paper is submitted in the middle of the paper. The latter is located at the initial stage of the study.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

山浦 義彦其他文献

山浦 義彦的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('山浦 義彦', 18)}}的其他基金

幾何学的測度論及びその時間発展問題の研究
几何测度论及其时间演化问题研究
  • 批准号:
    07740128
  • 财政年份:
    1995
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了