Machine learning for perturbative expansions in quantum field theory

量子场论中微扰展开的机器学习

基本信息

  • 批准号:
    22K03604
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

素粒子物理学の標準模型は大きな成功を収めているものの、理論的に「究極の理論」と言うにはほど遠いのが現状である。また、実験・観測的にも標準模型の枠内で説明できない現象が存在するなど、未解決の問題がある。このような問題を解決するため、さまざまな拡張模型が提唱されており、そのうちのどれが自然を正しく記述しているのか、あるいはすべて間違っているのかは、将来の実験・観測データと理論計算による予言を突き合わせることで明らかとなると期待される。実験・観測より得られる大量のデータからの信号事象の分類や粒子の識別などに関しては、以前より決定木などの機械学習の技術が使用されている。近年では、深層学習を用いることも盛んである。このような流れは人工知能・機械学習技術の急速な発達とともに、今後もより一層加速・発展していくものだと期待される。一方で、理論計算の面では、特に量子場の理論をもとにした摂動計算において、機械学習の利用は一部を除いてまだまだ限定的であると言える。また、摂動計算の基本構成要素であるファインマン積分は、摂動の高次へ行けば行くほど評価が解析的にも数値的にも困難となるので、より強力で効率的な計算手法が求められている。このような状況により、急速に発展している深層学習を含めた機械学習技術を摂動計算にどのように応用できるか、そして計算の効率化の達成や新たな知見を得ることができるかを、本研究では探求していく予定である。本年度は教師あり機械学習に必要なデータセットの作成に着手した。
The standard model of elementary particle physics has been successful, theoretical, and "ultimate theory." There are some phenomena in the standard model, which are not solved yet. The problem is solved by the model, and the natural problem is described by the model. The future problem is solved by the model. The theoretical problem is solved by the model. In fact, a large number of signal events and particle recognition techniques have been used in the past. In recent years, deep learning has been used. The rapid development of artificial knowledge and mechanical learning technology will lead to a new level of acceleration and development. The theory of quantum field is divided into two parts. The basic elements of the calculation of the integral and the high order of the dynamic are evaluated. The calculation method of the analytic numerical value is difficult and powerful. This study explores how to achieve new insights by using machine learning techniques. This year, teachers started to make mechanical learning necessary.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中山大学(中国)
中山大学(中国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
ブルックヘブン国立研究所(米国)
布鲁克海文国家实验室(美国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nucleon D-term in holographic quantum chromodynamics
全息量子色动力学中的核子 D 项
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

植田 高寛其他文献

植田 高寛的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('植田 高寛', 18)}}的其他基金

Feynman integral reduction for precise particle physics
精确粒子物理的费曼积分简化
  • 批准号:
    19K03831
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

肝臓内酸素動態を含む透析低血圧発症予知モデルの構築:統計・機械学習分析による解析
构建预测透析低血压发作(包括肝内氧动态)的模型:使用统计和机器学习分析进行分析
  • 批准号:
    24K15796
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
臨床情報による高精度分娩進行予測モデルの開発: 機械学習の活用
利用临床信息开发高精度的分娩进展预测模型:利用机器学习
  • 批准号:
    24K13948
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
新興感染症のシステマティック・レビューを機械学習を用いて簡易に実施するための研究
利用机器学习轻松对新发传染病进行系统评价的研究
  • 批准号:
    24K13518
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
独立成分分析を活用した信頼性の高い機械学習手法の構築
使用独立成分分析构建可靠的机器学习方法
  • 批准号:
    24K15093
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
学習過程情報に基づき理由を説明可能な高速論理型機械学習器の開発の提案
开发可根据学习过程信息解释原因的高速逻辑机器学习装置的提案
  • 批准号:
    24K15095
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多次元イベント時間データ解析の推測理論と方法・機械学習の開発
多维事件时间数据分析的推理理论和方法/机器学习的发展
  • 批准号:
    24K14853
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
速度ポテンシャルエネルギー整形法と機械学習を用いた宇宙機制御理論の開発
利用速度势能整形方法和机器学习发展航天器控制理论
  • 批准号:
    23K20946
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ユビキタス機械学習社会におけるプライバシ保護基盤
无处不在的机器学习社会中的隐私保护基础设施
  • 批准号:
    23K21695
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
正則化機能強化による超ロバスト推定法の開拓と一般化:信号処理・機械学習への応用
通过加强正则化功能开发和推广超鲁棒估计方法:在信号处理和机器学习中的应用
  • 批准号:
    23K22762
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
攻撃に耐性を持つ機械学習モデルによる設計工程ハードウェアトロイ検知
使用抗攻击的机器学习模型在设计过程中检测硬件木马
  • 批准号:
    23K24816
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了