機械学習を利用したゲノム情報による黒毛和種の遺伝的能力評価法の開発

利用机器学习的基因组信息开发一种评估日本黑色品种遗传能力的方法

基本信息

项目摘要

機械学習を利用したゲノム情報による新たな遺伝的能力評価の手法として、ベイズ法、カーネル法、ブースティング法、畳み込みニューラルネットワーク法およびkinship-adjusted-multiple-loci(KAML)法の5つの手法を開発した。これらの手法を利用することによって従来の統計育種学種法では定式化できなかった非相加的遺伝効果等の複雑な遺伝効果を含んだ遺伝的能力を算出することが可能になり、これまで以上に遺伝的能力の評価精度が向上することから家畜の改良速度が向上すると期待できる。まず、本年度はコンピューターシミュレーションによって発生させた2,000頭規模の疑似的なウシ集団データを対象に、開発した5つの手法を用いて遺伝的能力を評価した。開発した手法によって得られた遺伝的能力評価値と観測値との相関係数から遺伝的能力の評価精度を算出した結果、ベイズ法やKAML法では従来法よりも最大で10%程度遺伝的能力の評価精度が向上することが明らかになった。今後、黒毛和種の実データで検証するために、本年度は家畜改良センターおよび鳥取県畜産試験場の黒毛和種肥育牛96頭について枝肉形質の記録を収集するとともに、GGP BovineLD-24v4.0(イルミナ社製)で30,105か所の一塩基多型解析を実施してゲノム情報を蓄積した。これまで収集してきたデータと併せて約3,900頭のデータを蓄積することに成功し、開発した遺伝的能力評価法の精度を詳細に検証するためのデータ整備が整いつつある。
The five methods for evaluating the ability of machine learning to utilize the new information are developed: the first method, the second method, the third method, the fourth method and the kinship-adjusted-multiple-loci (KAML) method. The method of statistical breeding is used to calculate the ability of non-additive genetic inheritance, including genetic inheritance, to evaluate the accuracy of genetic inheritance, to improve the speed of livestock, and to improve the quality of livestock. This year, we will evaluate the ability of the company to develop 2,000 suspected group projects, develop five methods and use them. The accuracy of the evaluation of the ability of the open method is calculated by the correlation coefficient of the open method and the KAML method. The accuracy of the evaluation of the ability of the open method is calculated by the maximum of 10%. In the future, the quality of meat of 96 black and white cattle from the livestock improvement and breeding test site in Tottori will be recorded and collected. GGP Bovine LD-24v4.0 (International System) will be implemented and the multi-type analysis information will be accumulated. The collection of data and the accumulation of approximately 3,900 data were successfully tested and the accuracy of the ability assessment method was evaluated in detail.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

西尾 元秀其他文献

西尾 元秀的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('西尾 元秀', 18)}}的其他基金

遺伝子情報の育種利用と畜産におけるバイオインフォマティクスの展開
遗传信息在育种中的利用及畜牧业生物信息学的发展
  • 批准号:
    08J03716
  • 财政年份:
    2008
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
  • 批准号:
    2401655
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
機械学習アルゴリズムを用いた敗血症性凝固線溶障害の早期予測モデルの開発
使用机器学习算法开发脓毒性凝血和纤溶性疾病的早期预测模型
  • 批准号:
    24K12133
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
アニーリングと機械学習の融合による説明可能AI基盤の研究
结合退火和机器学习研究可解释的人工智能基础设施
  • 批准号:
    24KJ1081
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了