力学系の大域的分岐の研究

动力系统全局分岔研究

基本信息

  • 批准号:
    08740139
  • 负责人:
  • 金额:
    $ 0.7万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

本年度の研究実績は(1)ベクトル場のホモクリニック倍分岐の研究,(2)特異摂動的ベクトル場の軌道の大域的構造の研究,(3)ベクトル場の標準形の研究,に大別される.(1)ホモクリニック倍分岐の問題に関してはorbit-flip型のホモクリニック軌道を持つ区分的に線型なベクトル場の族を対象として数値的また数学的な解析を行い,無限回のホモクリニック倍分岐の発生とその集積が起こりうることを示唆する結果を得た.これはホモクリニック倍分岐がある場合にFeigenbaum現象と類似の仕方で無限回繰り返して起こり集積することを示唆しており,カオス的力学系との関わりの新しい側面として興味深い.またそれを数学的に証明するための試みとして,余次元3のより退化したホモクリニック軌道からの分岐をべ,その開折により無限個のホモクリニック倍分岐が起こることを示した.(2)特異摂動的ベクトル場に関してはある種の特異摂動的な2次元常微分方程式を考え,それが適当な条件の下に無限個のヘテロクリニック軌道を持つことをConley indexの理論を用いて示した.これは今後このようなタイプの力学系の研究に有力な手法を提供することが期待される.またshadow systemと呼ばれる非線型偏微分方程式系の解空間の大域的構造についてもConley indexを用いた研究を行い,現在論文を投稿中である.(3)ベクトル場の標準形に関しては,宇敷きによって与えられた標準形の計算方法を改良し,J.Sandersの論文で未解決であった問題に部分的な解答を与えた.
This year's research achievements include: (1) the study of the bifurcation of the field,(2) the study of the structure of the orbit of the field in the large domain,(3) the study of the standard form of the field, and (4) the study of the bifurcation of the field. (1)The problem of multiple divergence is related to the problem of orbit-flip-type. Feigenbaum phenomena and similar phenomena are found in the case of multiple divergence. The proof of mathematics is that the residual element 3 is degenerate, the orbit is divergent, and the open element is infinite. (2)A study of the differential equations of 2-dimensional equations with special "motion" is presented in the theory of infinite "motion" orbits under appropriate conditions. A powerful method for the study of mechanical systems in the future is expected. The shadow system and the structure of solution space of nonlinear partial differential equation system in large domain are studied in the application of Conley index. (3)J. Sanders 'paper on the improvement of the calculation method of the standard form of the field, the solution of the unsolved problem and the solution of the problem.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hiroshi Kokubu,Konstantin Mischaikow,and Hiroe Oka: "Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equations" Nonlinearity. 9・5. 1263-1280 (1996)
Hiroshi Kokubu、Konstantin Mischaikow 和 Hiroe Oka:“奇异摄动常微分方程中无限多个连接轨道的存在”9・5(1996 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroshi Kokubu,Hiroe Oka,and Duo Wang: "Linear grading function and further reduction of normal forms" Journal of Differential Equations. 132・2. 293-318 (1996)
Hiroshi Kokubu、Hiroe Oka 和 Duo Wang:“线性分级函数和范式的进一步简化”《微分方程杂志》132・2(1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroshi,Kokubu,Motomasa Komuro,and Hiroe Oka: "Multiple homoclinic bifurcations from orbit-flip,I:Successive homoclinic doublings" International Journal of Bifurcations and Chaos. 6・5. 833-850 (1996)
Hiroshi、Kokubu、Motomasa Komuro 和 Hiroe Oka:“轨道翻转的多个同宿分岔,I:连续同宿加倍”国际分岔与混沌杂志 6・5(1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
"Hiroshi Kokubu and Vincent Naudot" Existence of infinitely many homoclinic doubling bifurcations from some codimension three homoclinic orbits. Journal of Dynamics and Differential Equations. 1997 ((掲載予定))
“Hiroshi Kokubu 和 Vincent Naudot”来自某些余维三同宿轨道的无限多个同宿倍分岔的存在,动力学与微分方程杂志 1997 年。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

国府 寛司其他文献

国府 寛司的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('国府 寛司', 18)}}的其他基金

ベクトル場の分岐とそれに伴うカオスの発生の研究
矢量场分叉及其产生的混沌研究
  • 批准号:
    07740150
  • 财政年份:
    1995
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似国自然基金

二维材料异质结光电转换动力学研究及器件应用
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
罂粟科植物的系统发育和时空演化
  • 批准号:
    31770231
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
豆科植物属水平的生命之树及其时空演化
  • 批准号:
    31500175
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
非线性微分方程结点解的全局结构
  • 批准号:
    11561038
  • 批准年份:
    2015
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目
等变奇点理论及其在分岐问题研究中的应用
  • 批准号:
    19771035
  • 批准年份:
    1997
  • 资助金额:
    6.5 万元
  • 项目类别:
    面上项目
奇点理论及其应用
  • 批准号:
    19401034
  • 批准年份:
    1994
  • 资助金额:
    2.0 万元
  • 项目类别:
    青年科学基金项目
拓扑流结构和拓扑荷分岐理论
  • 批准号:
    19475018
  • 批准年份:
    1994
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
常微分方程的稳定性,分岐和浑沌现象研究
  • 批准号:
    18670491
  • 批准年份:
    1986
  • 资助金额:
    0.55 万元
  • 项目类别:
    面上项目

相似海外基金

ホイル状態崩壊分岐比の精密決定
箔态塌陷支化率的精确测定
  • 批准号:
    23K22521
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
N型糖鎖分岐酵素のユニークなドメインが制御するタンパク質特異的な糖鎖発現機構
N-聚糖分支酶独特结构域调控的蛋白质特异性糖链表达机制
  • 批准号:
    24K02222
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
正標数における有理性問題と不分岐コホモロジー
有理性问题与正特征无支上同调
  • 批准号:
    24K16894
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
小規模な分岐断層は巨大山脈を隆起させるか?モナザイトFT法からの新知見
小规模的分支断层是否会引发巨大的山脉?
  • 批准号:
    24K17150
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
人工分岐血管モデルを用いた血管疾患の病理解明
使用人工分支血管模型对血管疾病进行病理学阐明
  • 批准号:
    24KJ1933
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
血管内皮細胞の相互作用による分岐パターン形成の数理モデルと実験的検証
血管内皮细胞相互作用形成分支模式的数学模型和实验验证
  • 批准号:
    24K09397
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
局所体の分岐と特性サイクル
局部场的分岔和特征循环
  • 批准号:
    24K06683
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
力学系に対する相空間全構造解析と分岐解析の統合による新たなアプローチ
相空间全结构分析与分岔分析相结合的动力系统新方法
  • 批准号:
    23K25786
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
分岐鎖アルコールによるアミノ酸代謝制御機構と細胞間情報伝達の解明
阐明支链醇的氨基酸代谢控制机制和细胞间通讯
  • 批准号:
    23K23507
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
日本産トマト萎凋病菌が保持する系統学的分岐群固有アクセサリー染色体の機能の解明
日本番茄枯萎病真菌系统发育支特异性辅助染色体功能的阐明
  • 批准号:
    24K17892
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了