Computer assisted diagnosis using artificial neural network

使用人工神经网络的计算机辅助诊断

基本信息

  • 批准号:
    09671932
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

The presence of cervical lymph node metastases in patients with oral cancer is of great prognostic and therapeutic importance. The criteria whether the node is metastatic or reactive has not been well established. Meanwhile, artificial neural networks recently introduced in the analysis of diagnostic images may have bright prospects. The purpose of this study is to determine the accuracy indiagnosing the lymph node metastases on the ultrasonographic images using artificial neural network.Total of 188 nodes was used to the studies, all of which were verified histologically. In first part of the study 138 nodes randomly selected were used. Included among them were 60 nodes metastatic and 78 reactive. An ultrasonographic apparatus was model PT 2600 US scanner using 7.5 MHz B-mode linear scan probe. Seven ultrasonographic features evaluated were central echogenic hilus, echogenity of peripheral parencymal zone, homogeneity of peripheral parencymal zone, margin, border, Max-Min ratio and smallest diameter. To prove the effect of ultrasonographic features on diagnostic accuracy, a variety of network structure and ultrasonographic features were used. According to the result of the first part of the study, we made reporting system using Visual C++. The residual 50 nodes were used for the study in which we examined the ability of the reporting system.The results showed that central echogenic hilus, the echogenity of peripheral parencyma and Max-Mm ratio were most important features on diagnosis of metastasis. The neural network assisted reporting system improved the diagnostic ability of the unskilled doctors. In conclusion, the neural network may assist the diagnosis of cervical lymph node swelling.
口腔癌患者颈淋巴结转移的存在具有重要的预后和治疗意义。淋巴结是转移性的还是反应性的标准还没有很好地建立。同时,人工神经网络最近引入诊断图像的分析可能有光明的前景。本研究的目的是探讨人工神经网络在超声图像上诊断淋巴结转移的准确性,共对188个淋巴结进行了研究,所有淋巴结均经组织学证实。在研究的第一部分中,使用了随机选择的138个节点。其中转移性淋巴结60个,反应性淋巴结78个。超声检查设备为PT 2600型超声扫描仪,使用7.5MHz B型线阵探头。评价了7个超声特征,即中央回声门,周围实质区回声,周围实质区均匀性,边缘,边界,最大最小值比和最小直径。为了证明超声图像特征对诊断准确性的影响,使用了各种网络结构和超声图像特征。根据第一部分的研究结果,我们使用Visual C++开发了报表系统。结果表明,中心回声、周围实质回声和Max-Mm比值是诊断转移的最重要指标。神经网络辅助报告系统提高了非熟练医生的诊断能力。结论:神经网络可以辅助诊断颈部淋巴结肿大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARAKI Kazuyuki其他文献

ARAKI Kazuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARAKI Kazuyuki', 18)}}的其他基金

Development of new quality assurance phantom for cone beam computed tomography
开发用于锥形束计算机断层扫描的新型质量保证模型
  • 批准号:
    16K11522
  • 财政年份:
    2016
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intraoral Radiography Training System in the Virtual Reality
虚拟现实中的口内放射成像培训系统
  • 批准号:
    23592776
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the caries diagnostic method using extra-oral tomosynthesis method
口外断层合成法龋齿诊断方法的研究
  • 批准号:
    19592179
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Educational system for dental radiography training using virtual reality
使用虚拟现实进行牙科放射线摄影培训的教育系统
  • 批准号:
    13671978
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of 3D radiography for tooth and its supported structures
牙齿及其支持结构的 3D 放射线摄影技术的发展
  • 批准号:
    11671880
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
  • 批准号:
    10564534
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
Natural language processing and medical imaging analysis for multi-modality computer assisted diagnosis of ophthalmic diseases
自然语言处理和医学影像分析用于眼科疾病多模态计算机辅助诊断
  • 批准号:
    10881194
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
Improving dermatology access by direct-to-patient teledermatology and computer-assisted diagnosis
通过直接面向患者的远程皮肤病学和计算机辅助诊断改善皮肤病学的可及性
  • 批准号:
    10317682
  • 财政年份:
    2021
  • 资助金额:
    $ 2.05万
  • 项目类别:
Improving dermatology access by direct-to-patient teledermatology and computer-assisted diagnosis
通过直接面向患者的远程皮肤病学和计算机辅助诊断改善皮肤病学的可及性
  • 批准号:
    10496557
  • 财政年份:
    2021
  • 资助金额:
    $ 2.05万
  • 项目类别:
NSF/FDA SIR: A Modeling Tool for Assessment of Radiological Workflow Prioritization Based on Computer-assisted Diagnosis
NSF/FDA SIR:基于计算机辅助诊断的放射工作流程优先级评估建模工具
  • 批准号:
    1935809
  • 财政年份:
    2020
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Computer Assisted Diagnosis for Predicting Lung Cancer by Using Large Scale Low-Dose CT Database
利用大规模低剂量 CT 数据库预测肺癌的计算机辅助诊断
  • 批准号:
    19K08155
  • 财政年份:
    2019
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of computer-assisted diagnosis of thoracic diseases using a large scale 3D-CT image database
利用大规模3D-CT图像数据库开发胸部疾病计算机辅助诊断
  • 批准号:
    15K09919
  • 财政年份:
    2015
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
Computer assisted diagnosis using ultrasonography
使用超声检查的计算机辅助诊断
  • 批准号:
    262027-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了